Physics 290e: Electroweak Interactions Overview and Introduction

Sept 8, 2021

- bCourses Link
- Suggested Topics
- Image: Sign-up Sheet

The (Extended) Standard Model Lagrangian

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i \bar{\psi} D \psi & \text{gauge sector} \\ &+ \psi_i \lambda_{ij} \psi_j h + \text{h.c.} & \text{flavour sector} \\ &+ |D_{\mu}h|^2 - V(h) & \text{Higgs sector} \\ &+ \frac{1}{M} L_i \lambda^{\nu}_{ij} L_j h^2 \text{ or } L_i \lambda^{\nu}_{ij} N_j & \text{v mass sector} \end{aligned}$$

Let's start by reviewing what we know

Fermion-Boson Vertices for the Electroweak Interactions

- Charged current interactions are (V-A) (SU(2)_L gauge group) mediated by the W[±]
 - For quarks, weak basis not the same as mass basis: CKM matrix to map between them
 - For leptons:
 - In SM ν is massless: No mass basis
 - Because ν mass, they oscillate among species
 - But no evidence of charged lepton flavor violation to date (is tiny in SM)
 - Neutral current interactions through both $SU(2)_L$ and U(1)
 - Both γ and Z are mixtures of the two neutral gauge mediators
 - $\sin \theta_W$ specifies the mixing

The Weinberg Angle θ_W

- We have two couplings: g and g'
- Can always express the ratio as

$$\tan \theta_W = \frac{g}{g'}$$

Then

$$\sin \theta_W = \frac{g}{\sqrt{g^2 + g'^2}}$$
$$\cos \theta_W = \frac{g'}{\sqrt{g^2 + g'^2}}$$

• And our LaGrangian becomes:

$$\mathcal{L}_{NC} = -\left[\overline{\chi}\gamma^{\mu}\left(gI_{3}(W_{3})_{\mu} + g'B_{\mu}\frac{Y}{2}\right)\chi\right]$$

$$= -\sqrt{g^{2} + g'^{2}}\left[\overline{\chi}\gamma^{\mu}\left(\sin\theta_{W}I_{3}(W_{3})_{\mu} + \cos\theta_{W}B_{\mu}\frac{Y}{2}\right)\chi\right]$$

• Now we can pick out the piece that couples to charge and identify it with the photon

The photon, the Z and the W^{\pm}

• Define photon field as piece that couples to charge

$$A_{\mu} = B_{\mu} \cos \theta_W + (W_3)_{\mu} \sin \theta_W$$

• The Z is the orthogonal combination

$$Z_{\mu} = -B_{\mu}\sin\theta_W + (W_3)_{\mu}\cos\theta_W$$

• Because photon couples to charge, we can relate e to the couplings and θ_W :

$$e = g\sin\theta_W = g'\cos\theta_W$$

• The W^{\pm} bosons are

$$W^{\pm} = \frac{W_1 \pm iW_2}{\sqrt{2}}$$

and their coupling remains g. Using standard conventions

$$\frac{g^2}{8} = \frac{G_F M_W^2}{\sqrt{2}}$$

• $\sin \theta_W$ is a parameter to be measured (many different techniques)

$$\sin^2 \theta_W \sim 0.23$$

Boson-Boson EW vertices

- Fully determined by gauge invariance and defn of γ as boson that couples to charge
- 3-Boson couplings of W to γ and Z
 - No $Z \rightarrow ZZ$ coupling in SM
- 4-Boson couplings of WW to Z and γ
 - ▶ No $ZZ \rightarrow ZZ$ coupling in SM

Charge Current Quark Electroweak Interactions

• Write hadronic current

$$J^{\mu} = -\frac{g}{\sqrt{2}} \left(\overline{u} \ \overline{c} \ \overline{t} \right) \gamma_{\mu} \frac{(1-\gamma_5)}{2} V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- V_{CKM} gives mixing between strong (mass) and (charged) weak basis
- Often write as

$$V_{CKM} = \begin{pmatrix} V_{ud} & Vus & V_{ub} \\ V_{cd} & Vcs & V_{cb} \\ V_{td} & Vts & V_{tb} \end{pmatrix}$$

• Wolfenstein parameterization:

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Here λ is the $\approx \sin \theta_C$.

The CKM Matrix (Continued)

• From previous page:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$\approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- From the explicit form (dropping terms of λ^2 or higher)

$$\rho + i\eta = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$$

• Unitarity insures $VV^{\dagger} = V^{\dagger}V = 1$. Thus

$$\sum_{i} V_{ij} V_{ik}^{*} = \delta_{jk} \text{ column orthogonality}$$
$$\sum_{j} V_{ij} V_{kj}^{*} = \delta_{ik} \text{ row orthogonality}$$

• Eg:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

The Unitarity Triangle

From previous page

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

• Divide by $|V_{cd}^*V_{cb}|$:

$$\frac{V_{ud}V_{ub}^*}{|V_{cd}^*V_{cb}|} - 1 + \frac{V_{td}V_{tb}^*}{|V_{cd}^*V_{cb}|} = 0$$

- Think of this as a vector equation in the complex plane
- Orient so that base is along x-axis

• Also from previous page:

$$\rho + i\eta = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$$

The Measurement Game Plan

- Want to test if matrix is unitary
 - Failure of unitarity means new physics
- Make *many* measurements of sides and angles to over-constrain the triange and test that it closes

 $\alpha \equiv arg[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*]$

$$\beta \equiv arg[-V_{cd}V_{cb}^*/V_{td}V_{tb}^*]$$

$$\gamma \equiv arg[-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*]$$

The Fermion Quantum Numbers

- Follow same prescription as for the leptons
- W_{μ} coupling is left handed: $\gamma_{\mu}(1-\gamma^5)/2$, B coupling is left-right symmetric: γ_{μ}
 - Left handed weak isodoublets, right handed weak isosinglets
 - Y value for multiplets chosen to enforce $Q = I_3 + Y/2$

fermion	Q	I_3^L	Y_L	Y_R
$ u_\ell$	0	$\frac{1}{2}$	$^{-1}$	-
l	-1	$-\frac{1}{2}$	-1	$^{-2}$
u, c, t	$+\frac{2}{3}$	$+\frac{1}{2}$	$+\frac{1}{3}$	$+\frac{4}{3}$
d,s,b	$-\frac{1}{3}$	$-\frac{1}{2}$	$+\frac{1}{3}$	$-\frac{2}{3}$

Predicted Z Couplings to Fermions

• The Z current specified by

$$Z_{\mu} = -B_{\mu}\sin\theta_W + (W_3)_{\mu}\cos\theta_W$$

• Together with the LaGrangian from page 18 this gives (with some math)

$$J^Z_\mu = J^3_\mu - \sin^2 \theta_W j^{EM}_\mu$$

- The neutral weak coupling is NOT (V-A) but rather $C_V \gamma_\mu + C_A \gamma_m u (1 \gamma^5)$
- Values of C_V and C_A can be calculated from $\sin^2 \theta_W$
- Weak NC vector and axial vector couplings are:

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \mathbf{f} & Q_f & C_A & C_V \\ \hline \nu & \mathbf{0} & \frac{1}{2} & \frac{1}{2} \\ e & -\mathbf{1} & -\frac{1}{2} & -\frac{1}{2} + 2\sin^2\theta_W \\ u & \frac{2}{3} & \frac{1}{2} & \frac{1}{2} - \frac{4}{3}\sin^2\theta_W \\ d & -\frac{1}{3} & -\frac{1}{2} & -\frac{1}{2} + \frac{2}{3}\sin^2\theta_W \end{array}$$

Forward-Backward Asymmetry

- Angular distribution in QED: $1 + \cos^2 \theta$
- Here θ is angle between ingoing e^- direction and outgoing fermion f direction
- Parity violating weak interactions add a $\cos \theta$ term
- Can see this effect either by measuring angular distribution or integrating over positive and negative cos θ

Both have been done

• The integrated quantity

$$A_{FB} \equiv \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

- Different asymmetries for leptons, for *u*-type and for *d*-type quarks
- Note: e^+e^- channel has t-channel Feynman diagram

Measuring the Quark Couplings at LEP

- Asymmetry measurements require distinguishing f and \overline{f}
- No clean way to do this for light quarks
 - Can try to measure jet charge, but large systematic uncertainties
 - We saw results from later HERA measurements on page 6
- Variety of techniques possible for "tagging" bottom and charm ("Heavy Flavor")
 - Some distinguish q and \overline{q} while others don't
- Want to determine
 - $A_{FB}^{b,c}$: Different τ_3 for b and c leads to different couplings
 - R_b and R_c : Sensitive to couplings but also in case of R_b to Zbb vertex

Hera: DIS at large Q^2

• Electron-proton collider

- e^+ and e^- : $E_e = 27.6$ GeV
- $E_p = 920 \text{ GeV}$
- Unpolarized running 1993-2000
- Longitudinally polarized leptons
- Fits to high statistics data to determine EW parameters
- Leave vector and axial vector couplings of *e*, *u*-quarks and *d*-quarks free
- Constrain SM parameters
- Global PDF fits

Measurements of NC couplings of quarks

- Axial and vector couplings determined by weak I_3 and Y
- Same equations as for leptons, but different numbers
- These couplings measured well at LEP, SLC
- HERA provides an alternative method

Quark Interactions with the Higgs: Yukawa Couplings

- Coupling to W^+W^- and ZZ defined by ${\cal L}$
- · Coupling to fermions with strength that depends on fermion mass

These are known as the Yukawa couplings

- Current LHC measurements provide strong constraints on the W and Z and τ couplings to the Higgs, but how about the quark Yukawas?
 - Indirect constraints on *Ht* coupling from ggF (top loop)
 - First observation of ttH production in 2018
 - First observation of $H \rightarrow b\bar{b}$ in 2018
 - Only limits on first and second generation quarks so far

BSM Physics: Searches for FCNC Interactions

- In SM, GIM mechanism suppresses FCNC
 - Unitarity of CKM matrix means FCNC only possible due to differences between quark masses
 - ▶ This is why, eg $BR(K_L^0 \rightarrow \mu^+ \mu^-) = 6.8 \times 10^{-9}$
- FCNC possible for BSM interactions
 - Because SM rate small, possible to see small BSM couplings if they exist
- Searches possible in many modes, eg:
 - $\blacktriangleright \ t \to Zq$
 - $\blacktriangleright \ b \to s\gamma \text{ or } s\ell^+\ell^-$

Goals for this semester

- This semester will concentrate on phenomenology of the EW interaction
 - Flavor Sector
 - Coupling of fermions (quarks and/or leptons) to gauge bosons
 - CKM matrix: real and imaginary elements
 - Searches for BSM terms that violate flavor symmetries
 - Gauge Sector
 - Measurements of 3 and 4 boson vertex couplings
 - EFT formalism and constraints on BSM interactions
 - Higgs Sector
 - Demonstration that the Higgs couples to mass
 - Direct searches for additional Higgs bosons
 - Indirect limits the EWSB sector from precision Higgs measurements
 - $\triangleright \nu$ mass sector
 - Strictly speaking, much of ν physics outside the SM
 - But "natural" extension of SM possible
 - Nature of ν mass term not yet determined
 - Dirac or Majorana?
 - If Majorana, v only fermion where mass doesn't come from Higgs mechanism