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High Energy Physics

One of the holy grails of HEP is the full
simulation of scattering processes at colliders
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...then evolve to time T
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One of the holy grails of HEP is the full
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...and then perform a measurement at time T




High Energy Physics

The theory governing all of this is quantum field theory

...and the quantum field theory of nature is well-approximated
In many ways by the Standard Model of particle physics
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The theory governing all of this is quantum field theory

...and the quantum field theory of nature is well-approximated
In many ways by the Standard Model of particle physics

A key feature of QFTs is that every spacetime point has
gquantum degrees of freedom (thus a field)



High Energy Physics

Two traditional approaches:
Perturbation theory
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Image credit: http://Ipc-clermont.in2p3.fr/IMG/theorie/L QCD2.jp Image credit: https://en.wikipedia.org/wiki/Feynman_diagram
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High Energy Physics

Pro: Full theory

Con: Dynamics are too hard

(already using supercomputers)

Two traditional approaches:
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Pro: Can do high-
energy dynamics

Con: An approximation

...and combinatorially many diagrams

Perturbation theory
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Image credit: https://en.wikipedia.org/wiki/Feynman_diagram
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QFT on a Quantum Computer

Pioneering work by S. Jordan, K. Lee and J. Preskill*
showed that it Is possible to simulate the time evolution
of a QFT in polynomial time on a guantum computer.

Our group studies hybrid strategies for approaching
QF Is that make the best use of lattice methods and

perturbation theory. Along the way, we have
developed a suite of error mitigation protocols.

*Science 336 (2012) 1130, 1111.3633



Pls: ’
Ben Nachman |
Bert de Jong (CRD)
Christian Bauer

(screen shot from a
recent group meeting!)

3
- -




®

Quantum Computing for HEP

Our group explores two inter-related topics

Quantum algorithms for
quantum field theory

Error mitigation for near term
quantum computers



Quantum Computing for HEP
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Know When to Unfold "Em: Study Applies Error-
Applying Quantum Computing to a Particle Process Reducing Methods from Particle Physics to Quantum

Berkeley Lab team models parton showers using a quantum algorithm

News Release Glenn Roberts Jr. (510) 520-0843 « February 12, 2021 COm pUtI ng
‘Unfolding’ techniques used to improve the accuracy of particle detector data can also improve the

m — “ < 129 readout of quantum states from a quantum computer
SHARES

News Release Glenn Roberts Jr. (510) 520-0843 « November 5, 2020
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A team of researchers at
Lawrence Berkeley National
Laboratory (Berkeley Lab) used a
quantum computer to
successfully simulate an aspect of
particle collisions that is typically
neglected in high-energy physics
experiments, such as those that
occur at CERN's Large Hadron
Collider.

The quantum algorithm they

developed accounts for the Hadron Collider displays a spray of particles (orange lines) emanating

complexity of parton showers from the collision of protons, and the detector readout (squares and
. . ! rectangles). (Credit: ATLAS collaboration)

which are complicated bursts of

particles produced in the

collisions that involve particle production and decay processes.

An ATLAS particle collision event display from 2018 at CERN's Large

Classical algorithms typically used to model parton showers, such as the popular Markov Chain
Monte Carlo algorithms, overlook several quantum-based effects, the researchers note in a study
published online Feb. 10 in the journal Physical Review Letters that details their quantum
algorithm.

J | /EVTES S B
§ , . . A wheel-shaped muon detector is part of an ATLAS particle detector upgrade at CERN. A new study applies “unfolding,” or error
‘We've essentla“y shown that you can pUt a parton shower on a quantum Computer with correction techniques used for particle detectors, to problems with noise in quantum computing. (Credit: Julien Marius
Ordan/CERN)

efficient resources,” said Christian Bauer, who is Theory Group leader and serves as principal
investigator for quantum computing efforts in Berkeley Lab's Physics Division, “and we've shown
there are certain quantum effects that are difficult to describe on a classical computer that you
could describe on a quantum computer.” Bauer led the recent study.

Borrowing a page from high-energy physics and astronomy textbooks, a team of physicists and
computer scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory
(Berkeley Lab) has successfully adapted and applied a common error-reduction technique to the
field of quantum computing.




Quantum Computing for HEP
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Applying Quantum Computing to a Particle Process B. Nachman, D. Provasoli, W. de Jong,
Berkeley Lab team models parton showers using a quantum algorithm C Bauer, PhyS ReV. Lett 126 (2021) 062001

News Release Glenn Roberts Jr. (510) 520-0843 « February 12, 2021
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Ateam of researchers at 3 R
Lawrence Berkeley National ™ ¢
Laboratory (Berkeley Lab) used a
quantum computer to
successfully simulate an aspect of
particle collisions that is typically
neglected in high-energy physics
experiments, such as those that
occur at CERN's Large Hadron
Collider.

<129 | |. Georgescu, Nature Rev. Physics 3 (2021) 73

The quantum algorithm they
developed accounts for the
complexity of parton showers,
which are complicated bursts of

Today, we will talk about more

collisions that involve particle production and decay processes.

Classical algorithms typically used to model parton showers, such as the popular Markov Chain recent Work in thiS area, but this

Monte Carlo algorithms, overlook several quantum-based effects, the researchers note in a study

published online Feb. 10 in the journal Physical Review Letters that details their quantum artiCIe Was abOut Our Work On

algorithm.

“We've essentially shown that you can put a parton shower on a quantum computer with b “l)artOn Sho WerS 7 pUbliShed in

efficient resources,” said Christian Bauer, who is Theory Group leader and serves as principal

investigator for quantum computing efforts in Berkeley Lab's Physics Division, “and we've shown PRL thiS year and aISO fea tured

there are certain quantum effects that are difficult to describe on a classical computer that you

could describe on a quantum computer.” Bauer led the recent study. in Na ture Re Vie WS PhySiCS



QFT on a Quantum Computer

Proposals for ab initio calculations use lattice methods.

(and digitize the field values to make the

infinite-dimensional Hilbert space

Let's say we digitize our fields into n, va
have N lattice points in each of the d di

finite)

ues and

rections

Then, our Hilbert space is ng V9 - dimensional

On a quantum computer, we will need O(N9 log(ns))qubits
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Then, our Hilbert space is ng V9 - dimensional

On a quantum computer, we will need O(N9 log(ns))qubits



QFT on a Quantum Computer

On a quantum computer, we will need O(N9 log(n,))qubits

Lets put in some numbers.

Discretization and finite volume effects introduce

UV/IR cutoffs. If the smallest lattice spacing is A,

then the approximation of the continuum theory is
good only when E is above ~ 1/NA and below ~1/A.

It we want to cover all of the relevant dynamics at
the LHC; 10 MeV - 7 TeV, this means N ~ O(106)



QFT on a Quantum Computer

On a quantum computer, we will need O(N9 log(n,))qubits

~1078 qubits may be
more than we will have In
our lifetime...

It we want to cover all of the relevant dynamics at
the LHC; 10 MeV - 7 TeV, this means N ~ O(106)



Solution: hybrid approach

Let's use perturbation theory to cover the highest energies,
which would otherwise need the finest lattice spacings.

We can then try to identify objects in the theory that we
could try to calculate using guantum computers.

c=HQ®J ®..Q0J ®S

For hadronic jet physics at the LHC, the cross
section factorizes™ into a “hard component”,
“collinear components™ and “soft components”.

*The formal structure for this is Soft Collinear Effective Theory (SCET) which C. Bauer co-created many years ago



Solution: hybrid anproach

We don't need the full dynamic range of
Let’s use perturbi the LHC, so can use far fewer qubits ...

which would ot
~millions or billions of qubits may be

We can then tr possible in the not-to-distant future

could try to carcurate ur gudl LUl GUITTIPULET S.

c=HQ®J ®..Q0J ®S

For hadronic jet physics at the LHC, the cross
section factorizes™ into a “hard component”,
“collinear components™ and “soft components”.

*The formal structure for this is Soft Collinear Effective Theory (SCET) which C. Bauer co-created many years ago



C. Bauer, M. Freytsis, BPN, 2102.05044

Soft Physics on a Quantum Computer

N

High-energy particles do not contribute to dynamics
- they are instead modeled as static charges.

Y, = Pexp ig/ ds n-A(z* = nts) “Wilson Line”
_ 0 i

where nis a light-like direction and A is the soft gauge field.
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Soft Physics on a Quanturg Computer

N

Y, = Pexp ig/ ds n-A(z* = nts) “Wilson Line”
_ 0 i

where nis a light-like direction and A is the soft gauge field.

The matrix elements for the soft sector are (X |T|Y, YT—ZL] Q)
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Simplified Model

Our goal is the Standard Model, but given current resources,
let's consider a simplitied problem: 1+1 dimension and a
massless scalar theory instead of a gauge theory.

Clearly, some of the complexity is lost,
but many salient features remain.

H:/daz%(q'ﬁ?—qsa%),

Y, = Pexp ig/ ds ¢zt = nts)
L 0 |
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Simplified Model on a Lattice
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Simplified Model on a Lattice & Digitized
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Towards a Quantum Circuit
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Towards a Quantum Circuit
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Towards a Quantum Circuit
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Towards a Quantum Circuit
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Towards a Quantum Circuit
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Quantum Measurements

IBM Q Manhattan (65 superconducting qubits)
N = 3 sites, n, = 4 (S0 2 qubits per lattice site)
With only 3 lattice sites, the matrix

element simplities signiticantly - all time
evolution cancels out:

XITYL YR = [(Xeioor(oea=nn)i)
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Quantum Measurements: results
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Quantum computer gives a good description of the analytical result!
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Challenges: Digitization

1.0 Converges quickly!
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Challenges: Noise

1.0 g Not that good out of£he box
... heed error mitigation!
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Challenges: Noise

1.0 g Not that good out of £he box
: T ... heed error mitigation!
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Readout errors
and Gate errors




Readout error corrections
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On a guantum compulter,
the state may be 1 but
readout as a 0, etc.

For n qubits, there is a
2" X 2" transition matrix.

HEP has proposed many
solutions to this problem!

.and we call them
unfolding

B. Nachman, M. Urbanek, W. de Jong, C. Bauer, npj Quantum Information 6 (2020)



Readout error corrections

High Energy Physics Quantum Computing
x |¢i>.n< Naive inversion
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We have proposed to use HEP ¢
unfolding techniques to correct
guantum computer readout errors.
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B. Nachman, M. Urbanek, W. de Jong, C. Bauer, npj Quantum Information 6 (2020) state




More on readout errors

-

O

-

We are still actively
developing methods to
reduce readout errors.

-

-

-

For example, note that
Pr(1 = 0) > Pr(0 — 1).
One can apply a simple
‘rebalancing” in order
to Improve precision.
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R. Hicks, C. Bauer, BPN, PRA 103 (2021) 022407



Even more on readout errors

In QFT simulations, we want to measure many
observables simultaneously on a complex phase space.

...It I1s thus essential to apply measurement-by-
measurement corrections. Matrix inversion is insufficient.



Even more on readout errors

In QFT simulations, we want to measure many
observables simultaneously on a complex phase space.

...It I1s thus essential to apply measurement-by-
measurement corrections. Matrix inversion is insufficient.

2108.12432 : Hot off the press - posted earlier this week!

Active Readout Error Mitigation

Rebecca Hicks# ' * Bryce Kobrin#,!'T Christian W. Bauer,?'* and Benjamin Nachman?:3

' Physics Department, University of California, Berkeley, Berkeley, CA 94720, USA
2 Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
(Dated: September 1, 2021)

We have developed a new protocol for exactly this purpose!



Active Readout Mitigation

0) U A R '
When readout errors
are larger than gate l
errors (as is often the 0) U . 7 -
case), we can trade ﬂL »
one for the other 0) S v e I
0) b A ——

R. Hicks, B. Kobrin, C. Bauer, BPN, 2108.12432



Active Readout Mitigation
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R. Hicks, B. Kobrin, C. Bauer, BPN, 2108.12432



One common technigue is Zero Noise Extrapolation



T = g T 1T

AU D - DU D - D Us A

One common technigue is Zero Noise Extrapolation

[dea: replace each CNOT by 2n+1 CNQOTs. This doesn't
change the answer without noise, but systematically
Increases the noise. Then, extrapolate to zero noise.




T = g T 1T

AU D - DU D - D Us A

We have explored a variety of methods that have different n;
per gate. When combined with other methods, this sets the
state-of-the-art for moderately deep circuits.

A. He, BPN, W. de Jong, C. Bauer, PRA 102 (2020) 012426



Random ldentity Insertion Method

135 One idea is to promote
5o Nit0 arandom variable
S
= 25 ¢ Circuit with N
= o S noisy gates:
—_— ()] "y
2 Deterministic|| 3 traditional method
5 (Fixed) |15 needs (n+1) x N
- o additional gates
|- | | 15 Random method
1 2 3 4 only needs n+1
Correction order, n additional gates (!)

A. He, BPN, W. de Jong, C. Bauer, PRA 102 (2020) 012426



. QFT

e (Continue to push towards the Standard Model
 (Gauge theories on guantum computers
* Multigaussian state preparation

e Potential of quantum machine learning for HEP

- Error Mitigation

* Readout errors

« (Combine active and passive corrections
 (ate errors

* Reduce circuit complexity

* Robustness from symmetry?

- Software-hardware interface

e (Custom operations
* Resetting qubits, repeated operations, qudits
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Quantum Measurements: circuit
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