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Motivation

Material flow
Motivation for this work was data reconciliation in material flow
Trace valuable materials in cycle of production, consumption,
waste deposit, recycling,. . .
Data are often just expert assessments and thus not normally
distributed, but uniform, triangular, trapezoidal, etc.
Improve quality by imposing constraints: conservation of mass

Example flow chart

R. Frühwirth 4 CTD 2015



Introduction A Simple Example Other Applications Summary and Outlook

Motivation

Kinematic fit
Very similar problem
Track parameters are not always normally distributed, e.g. for
electrons fitted with the Gaussian-sum filter
Constraints are given by conservation of momentum and
energy

Example process

Scattering
Process

Particle 1

Particle 2

Particle 3

Particle 4
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Motivation

Vertex fit
Again, track parameters are not always normally distributed
Constraints are given by common vertex
Constraints may contain unobserved variables

Combination of experiments
Measurements are often not normally distributed, in particular if
the measured parameter is non-negative
Constraints are given by the fact that the same quantity is
measured
Feasible only if experiments publish full marginal likelihood
(posterior density)
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Principle and details

Principle idea
Restrict joint prior density of all observed and unobserved
variables to the constraint manifold
Unobserved variables are included by an uninformative or
weakly informative prior
Renormalize restricted posterior density to 1

Details
A detailed description of the algorithm can be found in:

O. Cencic and R. Frühwirth, A general framework for data
reconciliation—Part I: Linear constraints

Computers and Chemical Engineering, in press

Available at:

http://tinyurl.com/CencicFruhwirth
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Graphical illustration

A problem in 2D, x1 = x2

1510

Prior density of (x
1
,x

2
)

x
1

500
5

10

0.05

0.04

0.03

0.02

0.01

0
15

x
2 15

Prior density cut along x
1
=x

2

10

x
1

500
5

10

0.05

0.04

0.03

0.02

0.01

0
15

x
2

x
1

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

7=3.75
<=2.37

7=3.21
<=1.52

Marginal density of x
1

prior
posterior

x
2

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

7=4.00
<=4.00

7=3.21
<=1.52

Marginal density of x
2

prior
posterior

R. Frühwirth 10 CTD 2015



Introduction A Simple Example Other Applications Summary and Outlook

Graphical illustration

A problem in 3D, x3 = x1 + x2
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Combination of measurements

Observables
Three measurements X1,X2,X3 of a small cross section x
Three experimental densities f1(x1), f2(x2), f3(x3),
support restricted to the positive axis
Considered as prior densities in this context
Densities need not be given in closed form
Must be possible to compute the densities and to draw random
numbers from them
In this simple example:

X1 ∼Ex(1.1) Exponential
X2 ∼Ga(2,0.5) Gamma
X3 ∼TrNorm(0,1.2,0,∞) Half Normal

Assume independence at the moment, will allow correlations
later

R. Frühwirth 13 CTD 2015
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Combination of measurements

Prior densities
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Combination of measurements

Constraints
Want to combine the measurements by imposing X1 = X2 = X3

If the posteriors are normal densities, the combined
measurement is the weighted mean
If not, we compute the joint density of of (X1,X2,X3) under the
constraints X1 = X2 and X1 = X3

The constraint manifold is the line x = λ(1,1,1)T

There is one free variable, which we choose to be y = x1

The dependent variables z = (x2, x3)
T are functions of y :

z = −Dy − d or Iz + Dy + d = 0

with:

z =

(
x2
x3

)
, y = x1, D =

(
−1
−1

)
, d =

(
0
0

)
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Combination of measurements

Derivation of the posterior
The joint prior density of the measurements is given by:

f (x) = f1(x1) · f2(x2) · f3(x3) = ff(y) · fd(z)

We compute the posterior density of x conditional on the
constraints
The posterior is the prior restricted to the constraint manifold,
renormalized to 1
It is easy to show that the posterior of y is given by:

π(y) =
fd(−Dy − d) · ff(y)∫
fd(−Dy − d) · ff(y) dy

π(y) is also called the target density

R. Frühwirth 16 CTD 2015
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Combination of measurements

Normalization of the posterior
In this example the integral can be computed by numerical
integration
In more complex cases this may get rather tedious, in particular if
the dimension of y is large
Explicit calculation of the integral can be avoided by drawing a
random sample from the posterior π(y) by Markov chain Monte
Carlo (MCMC)
We use the Metropolis-Hastings algorithm for sampling
Need a proposal density p(y) to generate values of the free
variables
No need to draw from the dependent variables
Independence sampler most suitable in this context

R. Frühwirth 17 CTD 2015
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Combination of measurements

Generating the Markov chain
1 Set i = 1, choose the sample size L and draw the starting value

y1 from p(y)
2 Draw a proposal value ŷ from p(y)
3 Compute the acceptance probability α by

α(y i , ŷ) = min
(

1,
π(ŷ)p(y i)

π(y i)p(ŷ)

)
4 Draw a uniform random number u ∈ [0,1]
5 If u ≤ α, accept the proposal and set y i+1 = ŷ , otherwise set

y i+1 = y i
6 Increase i by 1. If i < L, go to 2, otherwise stop sampling

R. Frühwirth 18 CTD 2015
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Combination of measurements

Advantages of the independence sampler
There is a natural proposal density:

p(y) = ff(y)

There is need for “burn-in”
If the observations are independent, the acceptance probability
has a very simple form:

α(y , ŷ) = min
(

1,
fd(−Dŷ − d)

fd(−Dy − d)

)
Sampler can be SIMDized by precomputing proposal values and
their pdf values
Sampler can be parallelized by generating several independent
Markov chains on different cores and combining them afterwards

R. Frühwirth 19 CTD 2015



Introduction A Simple Example Other Applications Summary and Outlook

Combination of measurements

Posterior analysis
The generated chain is a non-independent random sample Y
from the posterior π(y) of the free variables
The corresponding sample Z of the dependent variables z is
calculated by z i = −Dy i − d , i = 1, . . . ,L
Posterior means, variances, correlations, quantiles and credible
intervals are estimated from the complete sample X = (Z ;Y )

Marginal densities are smoothed before graphical representation
A measure of goodness can be obtained by computing the
discrepancy between the prior densities and the posterior
marginals
Examples:

Kolmogorov-Smirnov distance dKS

Hellinger distance dH =
√

1− BC (BC=Bhattacharya coefficient)

Small acceptance rate also indicates poor fit

R. Frühwirth 20 CTD 2015
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Combination of measurements

Posterior density
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Combination of measurements

Posterior discrepancies

X1 X2 X3

dKS 0.272 0.295 0.280
dH 0.316 0.285 0.287

Key properties of posterior

Mean STD Median 95%-Quantile
0.5721 0.3794 0.4912 1.3081

R. Frühwirth 22 CTD 2015



Introduction A Simple Example Other Applications Summary and Outlook

Combination of measurements

Gaussian approximation
Approximate each prior by a Gaussian with the same mean and
variance
Posterior is then Gaussian too, can be computed explicitely by
weighted mean ,
Useful cross-check of sampler ,
Posterior Gaussian extends into negative axis /

R. Frühwirth 23 CTD 2015
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Combination of measurements

Approximating densities
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Combination of measurements

Posterior density
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Combination of measurements

Posterior discrepancies

X1 X2 X3

dKS 0.231 0.104 0.126
dH 0.396 0.209 0.220

Key properties of approximate posterior

Mean STD Median 95%-Quantile
1.0027 0.4604 1.0027 1.7577

Key properties of exact posterior

Mean STD Median 95%-Quantile
0.5721 0.3794 0.4912 1.3081
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Combination of measurements

Correlated measurements
The sampler also works with non-independent measurements
Construct a joint prior with correlations from the given
marginals via a copula distribution
Have chosen a Gaussian copula g(u1,u2,u3) with ρ = 0.25
Joint prior:

h(x1, x2, x3) = g(F1(x1),F2(x2),F3(x3)) · f1(x1) · f2(x2) · f3(x3)

Target density:

π(x1) ∝ h(x1, x1, x1)

Proposal density is still f1(x1), but computation of α now
according to the general formula

R. Frühwirth 28 CTD 2015
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Combination of measurements

Posterior densities, ρ = 0.25
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Combination of measurements

Key properties of posterior with ρ = 0.25

Mean STD Median 95%-Quantile
0.4320 0.4148 0.3096 1.2759

Key properties of posterior with ρ = 0

Mean STD Median 95%-Quantile
0.5721 0.3794 0.4912 1.3081
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Combination of measurements
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Other applications

Extensions of the algorithm
Unobserved variables get an uninformative or weakly
informative prior (see paper)
Inequality constraints are reduced to equality constraints by
introducing slack variables (see paper)
Non-linear constraints are Taylor-expanded to linear ones
(work in progress)

Vertex fit
Track parameters can have non-normal track errors, for
instance electrons fitted with Gaussian-sum filter
Vertex constraints are non-linear
Vertex position enters with or without prior information
Vertex can be additionally constrained to a line (e.g. beam line),
a plane (e.g. target foil) or a volume (e.g. interaction region)
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Generalizations

Kinematic fit
Momentum conservation gives linear constraints, if momentum
suitably parameterized
Energy conservation gives non-linear constraints
Missing energy can be given an uninformative or an informative
prior, and can be restricted to positive values
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Summary and Outlook

Summary
Have developed method to impose linear or non-linear
constraints on non-normal observations
Constraints may include unobserved variables
Inequality constraints can be dealt with
Independence sampler easy to vectorize and to parallelize

Outlook
Will study non-linear constraints in more detail, in particular
performance penalty
Will study gross error detection and robustification in case
of poor fit or zero acceptance rate
Intend to apply the method to electrons fitted with GSF:
vertex fit, kinematic fit
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Summary and Outlook

Thank you!
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