

Low Momentum Track Reconstruction (for Mu2e)

David Brown, LBNL

The Mu2e Experiment

- Search for Charged Lepton Flavor Violation in μ⁻ capture on (Al) nuclei
- Target Sensitivity: $\Gamma_{\mu \rightarrow e}/\Gamma_{\mu \text{ capture}} \sim 10^{-16}$
- First beam in 2020
- Principal detector: 20-plane straw tracker
 - 0.8 m radius × 3 m length, 1T axial field, in vacuum
 - 5 mm diameter straws
 - Wires \perp to Z axis
 - Large angle stereo
 - ~1% X₀ total mass
 - ~20,000 channels

Mu2e Challenges

- Single track signal
- Low-momentum (105 MeV/c) e⁻ signal track
 - multi-turn helix
- High background rate
 - Most hits are from neutral particles and rays

~4K background hits/1 µsec

Mu2e Challenges

TD Workshop

- Extremely sensitive to momentum resolution
 - σ_{core} < 250 KeV/c (0.25% @ 105 MeV/c)
 - resolution tails < 1%

Reconstructed e Momentum

David Brown, LBNL

Mu2e Track Reco Strategy

- Neural net filter of 'obvious' backgrounds
 - δ-rays, proton hits, ...
- Time clustering
 - 50 nsec maximum drift
 - ~8/1 S/N for Pat. Rec.
- Robust helix fit using (stereo) space points
 - ~3cm resolution Time Division along wires to resolve stereo ambiguities
- KF final fit
 - SA outlier filter

Robust Helix Finding

- Absolute Gradient Error (AGE) circle fit
 - resistant to outliers
 - weak constraint against center drift
- Median-based linear fit to ϕ vs z
 - principle difficulty: resolving 2π ambiguity

David Brown, LBNL

CTD Workshop

Computing Performance

- 'Triggerless' DAQ
 - data streamed to a 36server processor farm
 - @200 KHz raw event rate
- Need factor ~200 filtering to meet storage limits
- Select using full track reconstruction
 - ~4 msec/event
 - meets requirements

16 cores

120 cores

14()KHz

	XEON E5-2687v2	XEON PHI 5510P
Stereo Hits		
0) reference code (gcc compiler)	83.6 msec	-
1) algorithmic improvements (gcc compiler)	4.3 msec	-
2) Intel compiler, loop vectorization	1.4 msec	4.8 msec
Background Hits		
0) reference code (gcc compiler)	9.0 msec	-
1) Intel compiler	5.1 msec	123.0 msec
2) refactoring	3.4 msec	38.1 msec
3) double \rightarrow single precision	2.1 msec	23.9 msec
Overhead		
0) reference code (gcc compiler)	0.9 msec	-
1) Intel compiler (estimated)	0.3 msec	2.0 msec
total processing time	3.8 msec	30.7 msec
events/sec (single core)	260	32
number of cores (36 servers)	728	4,320
events/sec (36 servers)	187,000	138,000

190KHz

Physics Performance

REPKELEY

CTD Workshop

Relative ax∈

Physics Performance

- 110 KeV/c core resolution
- 2% exponential tails

Discrete Ambiguity Resolution

- Residual sign assigned using extrapolation (iterative)
 - Miss-assignment probability increases at low radius
- Mu2e 'solution': use wire position for small drift times
 - Hit errors assigned accordingly

David Brown, LBNL

Hit Residual Pulls

- $Pull = \Delta/\sigma_{estimated}$
- Assigned hit errors tuned to give ~uniform track fit probability
- Outlier filtering sculpts LR ambiguity hit pulls
- LR mis-assignment comparable to intrinsic δ-ray background

Discrete Ambiguity Error Effect

- Momentum resolution high-side tails are correlated with discrete ambiguity mis-assignment fraction
 - ~2% mis-assignment in core
 - ~20% mis-assignment in (high-side) tail

Track Fit Parameterization (Helix)

- L = transverse flight $\mathbf{P} \equiv \{d_0, \phi_0, \omega, z_0, tan\lambda\}$
- BaBar Convention $R=1/\omega z$ y d_{0} d_{0} d_{0} (0,0,0)

- Based on seeing a small segment of a helix arc
- Geometric description
 - with kinematic interpretation
- Arbitrary parametric variable

 $\begin{aligned} x(L) &= 1/\omega \cdot \sin(\phi_0 + \omega L) - (1/\omega + d_0) \sin \phi_0 \\ y(L) &= -1/\omega \cdot \cos(\phi_0 + \omega L) + (1/\omega + d_0) \cos \phi_0 \\ z(L) &= z_0 + L \cdot \tan \lambda \end{aligned}$

Natural description of low-curvature tracks coming from a known point

Natural Mu2e Track Description

- Mu2e tracks make ~3 turns
- No origin point within tracker
- Tracker measures circle **Diameter**, not sagitta
- Tracker measures longitudinal wavelength, not angle
- Time, not position, is directly measured quantity

David Brown, LBNL

Parameterization Issues

- Purely geometric description isn't helpful
 - Scattering, energy loss depend on momentum, β
- Helix uses (arbitrary) parametric variable
 - Time is the natural physical parametric variable
- \Rightarrow Put time + momentum in helix description
 - Direct use of experimental observable (time)
 - Correct correlations between kinematics and geometry
 - Physical parametric variable
 - Intrinsic fit for time origin (t₀)
- 6-parameter helix

R, A, t Helix Parameterization

- R = transverse radius
 - sign(\mathbf{R}) = sign(d Φ /dt) = -sign(q B_z)
- A = longitudinal wavelength
 - $\Lambda = dz/d\phi$
 - sign(Λ) = helicity
- C_x,C_y = helix axis transverse position
- t_0 = time when particle passes z=0
- ϕ_0 = momentum azimuth when z=0
 - $\phi_0 = atan2(P_y, P_x), t=t_0$
- $\mathbf{Q} = cqB_z(0,0,0)$
 - c = speed of light
 - B(x) = magnetic field
- **m** = particle mass

R, Λ , t Helix Parameterization

R = transverse radius

- $sign(\mathbf{R}) = sign(d\Phi/dt) = -sign(qB_z)$
- A = longitudinal wavelength
 - $\Lambda = dz/d\phi$
 - $sign(\Lambda) = helicity$
- C_x,C_y = helix axis transverse position
- t₀ = time when particle passes z=0

• ϕ_0 = momentum azimuth when z=0

- $\phi_0 = atan2(P_y, P_x), t=t_0$
- **Q** = cqB_z(0,0,0)
 - c = speed of light
 - B(x) = magnetic field
- m = particle mass

Requires Pt ≠ 0

Requires $P_z \neq 0$

Helix Equations

- Angular Velocity
- $\Omega = d\Phi/dt = -c\mathbf{Q}/sqrt((\mathbf{R}^2 + \mathbf{\Lambda}^2)\mathbf{Q}^2 + \mathbf{m}^2)$
- Position
- $\mathbf{x}(t) = \mathbf{C}_{\mathbf{x}} \mathbf{R} \cdot \sin(\Omega(t-t_0) + \mathbf{\Phi}_0)$
- $y(t) = C_y + R \cdot \cos(\Omega(t-t_0) + \phi_0)$
- $z(t) = \mathbf{\Lambda} \Omega(t-\mathbf{t_0})$
- Momentum
- $P_x(t) = \mathbf{QR} \cdot \cos(\Omega(t-t_0) + \mathbf{\Phi}_0)$
- $P_y(t) = \mathbf{QR} \cdot \sin(\Omega(t-t_0) + \mathbf{\Phi}_0)$
- $P_z(t) = -Q\Lambda$
- $|\mathsf{P}| = \mathbf{Q} \cdot \operatorname{sqrt}(\mathbf{R}^2 + \Lambda^2)$

Parameterization Comparison

- Toy MC of Mu2e detector
 - 0.8 m radius × 3 m length cylindrical chamber
 - 100 μm resolution measurements \perp to z axis
 - 0.0002 X_0 material (scattering, ΔE) per measurement
- Study non-linearities, parameter errors and correlations in pseudo Kalman filter fit
 - Covariance computation only
 - As a function of momentum and polar angle

Equivalent for both parameterizations

Estimated Momentum Error

 $(\omega, tan\lambda, L)$

(R,Λ,t)

Covariance Correlations BERKELEY $(\omega, tan\lambda, L)$ (R,Λ,t) **Correlation Matrix Correlation Matrix** t_o 0.8 0.8 0.6 0.6 φ₀ 0.4 0.4 0.2 0.2 C_v 0 0 - C_x -0.1 **—**—0.: -0.4

d₀ -0. Lambda tanλ -0. -0. -0. -0.1 Omega Radius _1 z₀ C_x C_v Omega tanλ d_0 φ_0 t_o Radius Lambda ϕ_0 t₀

David Brown, LBNL

t₀

φ₀

z₀

_1

22

Trajectory Gaps

- Scattering, energy loss modeled as discrete effects
 - Track is modeled as a sequence of separate helices
- Extended KF (1st order approximation) creates small gaps between helix segments
- Size indicates (parameterization-dependent) non-linearities

Conclusions + Future Work

- Low-momentum, high-precision tracking imposes special requirements
 - Low mass detectors
 - 3-d measurements
 - high speed, high efficiency, high resolution reconstruction
- Mu2e has a working solution
- Outstanding issues:
 - Helix finding efficiency
 - Discrete ambiguity resolution
 - Optimal parameterization

Backup

What is Special About Low Momentum?

- Increased material effects
 - multiple Coulomb scattering $\sim 1/P\beta$
 - energy loss straggling RMS ~1/P β^2
- Looping
 - multi-turn helices overlap in x-y and time
- Overlapping intrinsic background processes
 - delta-rays, hadronic interactions, albedo, decay, ...

Material Effects

- Model using Lynch-Dahl formula (NIM B58 (1991))
 - Screened Rutherford cross-section
 - Parameterized by tail truncation factor
 - Can be tuned to model reconstruction truncation
- Most probable value for energy loss, straggling
 - Mean is biased towards tail
 - Landau tails are 'self-truncated' by pat. rec.

BaBar Experience

- Low momentum tracks loop in the drift chamber
 - transverse hit overlaps
- Two kinds of reconstruction errors:
 - Loop branch found as primary particle
 - branch hits mis-assigned to primary
- BaBar 'solution': open track finding, filter at physics level
 - ~10% fake tracks
 - ~10% compromised tracks

David Brown, LBNI LAWRENCE BERKELEY NATIONAL LABORATORY CTD Workshop

(R,A,t) Helix Trajectory Gaps

Phi scatter gap

David Brown, LBNL

(R,Λ,t) Parameter Errors

C_x sigma

Λ sigma

Radius sigma

90

(0)500⁰.9.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

50 60 70 80

Helix Derivative Tests

Study change in parameters with ±1% momentum magnitude change

David Brown, LBNL