

Curved, free standing MAPS...

... and fast timing

Giacomo Contin (Università and INFN Trieste) Brown Bag Instrumentation Seminar – LBL – March 17th, 2021

Outline

- A free-standing detector based on curved silicon
 - The idea behind ALICE ITS3
 - Bent silicon performance
 - R&D highlights
- Timing with silicon
 - LGAD, SPAD/SiPM, FD-MAPS
 - Characterization campaign towards a 20 ps resolution

Includes material and help from: M. Suljic (CERN), M. Mager (CERN), G. Giacomini (BNL), L. Pancheri (UniTN - INFN), F. Carnesecchi (UniBO – INFN), R. Preghenella (UniBO – INFN), C. Gargiulo (CERN), I. Tymchuk (LTU) and many others

2009-2019 2021+ 2026+ ALICE ITS-1 ALICE ITS-2 ALICE ITS-3 Image: Construction of the co

Readout rate: 1 kHz Thickness of first layer: $1.14\% X_0$ Integration time: <20 μ s Thickness IB layer: 0.35% X_0 Innermost layer: at R = 18 mm Thickness of each layer: $0.05\% X_0$

• Constant search for a thinner and simpler geometry...

ALICE

Pictures of ITS2 installation from yesterday!

ITS2 Top Outer Barrel flying towards the ALICE magnet

ITS2 Top Outer Barrel installed in the final location

ITS3 detector layout

key improvements:

- ► closer to beam pipe: 23→18 mm
- less material: $0.3 \rightarrow \sim 0.03 \ \% X_0$

main benefit:

- better tracking performance
- especially at low p_T

03/17/2019

based on:

- ► wafer-scale (up to ~28x10 cm),
- ► ultra-thin (20-40 µm),
- bent (R=18, 24, 30 mm)
 Si sensors (MAPS)

giacomo.contin@ts.infn.it - LBL Brown Bag

ITS3 projected performance

improvement of factor 2 over all momenta

large improvement for low transverse momenta

- Observations:
 - Si makes only 1/7-th of total material budget
 - Non-uniformity due to support, cooling & overlaps

INFN

- Observations:
 - Si makes only 1/7-th of total material budget
 - Non-uniformity due to support, cooling & overlaps
- Removal of water cooling:
 - If power consumption
 < 20 mW/cm²

INFN

- Observations:
 - Si makes only 1/7-th of total material budget
 - Non-uniformity due to support, cooling & overlaps
- Removal of water cooling:
 - If power consumption
 < 20 mW/cm²

INFN

- Observations:
 - Si makes only ¹/₇-th of total material budget
 - Non-uniformity due to support, cooling & overlaps
- Removal of water cooling:
 - If power consumption
 < 20 mW/cm²
- Removal of the circuit board for power & data:
 - If integrated on chip

A dream: just silicon

A dream: just silicon - Curved

• Bending Si wafers + circuits is possible and has been tried!

A dream: just silicon - Curved

- Bending Si wafers + circuits is possible and has been tried!
- Radii much smaller than needed have been achieved
- We need to thin it down to < 50 μm

Die type	Front/back side	Ground/polished/plasma	a Bumps	Die thickness (µm)	CDS (MPa)	Weibull modulus	MDS (MPa	r _{min}) (mm)
Blank	Front	Ground	No	15–20	1263	7.42	691	2.46
Blank	Back	Ground	No	15–20	575	5.48	221	7.72
IZM28	Front	Ground	Yes	15–20	1032	9.44	636	2.70
IZM28	Back	Ground	Yes	15–20	494	2.04	52	32.7
Blank	Back	Polished	No	25-35	1044	4.17	334	7.72
IZM28	Back	Polished	Yes	25-35	482	2.98	107	24.3
Blank	Back	Plasma	Yes	18–22	2340	12.6	679	2.50
IZM28	Front	Plasma	Yes	18–22	1207	2.64	833	2.05
IZM28	Back	Plasma	giąco	n <u>g.</u> ont	n @sts.	ig,fp.it -	LBG2	Brq <u>yy</u> n E

N 03/17/2019

A dream: just silicon - W

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
 - typical sizes of few cm²
 - modules are tiled with chips connected to a flexible printed circuit board

A dream: just silicon - Wafe

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
 - typical sizes of few cm²
 - modules are tiled with chips connected to a flexible printed circuit board

- New option: stitching, i.e. aligned exposures of a reticle to produce larger circuits
 - actively used in industry
 - requires dedicated chip design

Wafer-scale sensor

19

A dream: just silicon - 12" Wafer-scale chip

Principle of photolithography

UV

wafer

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
 - typical sizes of few cm²
 - modules are tiled with chips connected to a flexible printed circuit board
- New option: stitching, i.e. aligned exposures of a reticle to produce larger circuits
 - actively used in industry
 - requires dedicated chip design
- Need to switch to TowerJazz 65 nm CMOS process Ø = 300mm
 - ITS2/ALPIDE: TowerJazz 180 nm only available on Ø=200mm

Wafer-scale sensor

mask

photoresist

- Baseline: ALPIDE architecture double column priority encoders.
- Two building blocks: periphery + pixel matrix repeated N times in vertical direction

Wafer-scale chip: possible architecture

- Baseline: ALPIDE architecture double column priority encoders.
- Two building blocks: periphery + pixel matrix repeated N times in vertical direction

TowerJazz 65 nm process exploration

TowerJazz 65 nm ISC technology

- 2D stiching experience
- 12" wafers (vs 8" mm in 180 nm)
- Smaller feature size \rightarrow smaller pixels
- First submission containing test structures
 - Transistor test structures
 - Small pixel matrices: 4x4 pixels, parallel output
 - "Large" pixel matrices: 64x32 pixels, rolling shutter
 - Bandgap, PLL, LVDS receiver prototypes
- MLR1 Submitted in Dec '20 Expected back in May '21

Pixel test structure

ITS3 Project timeline

MLR: multiple layer per reticle, ER: engineering run, BM: breadboard module, EM: engineering module, QM: qualification module, FM: final module

MLR: multiple layer per reticle, ER: engineering run, BM: breadboard module, EM: engineering module, QM: qualification module, FM: final module

Testing of MLR1 pixel matrices

In 6 months and for ~1 year

- Short time to prepare the test system and short usage time → avoid custom solutions
- ► Provide feedback for ER1 quickly → distribute the characterisation workload
- Solutions: a "proximity board" (+ potentially "carrier card") +
 - Existing test system, or
 - General purpose components (oscilloscopes, dev boards...)
- To keep in mind:
 - Testbeams, bending tests, irradiation, yield...
 - >100 chips on "carrier card"/"proximity boards" & ~20 test systems
 A large variety of samples to test in a very short time!

Curved silicon: does it even work?

Curved silicon: does it even work?

Along the short side

• Bending affects pixel matrix only

How to bend a 50 μm thick ALPIDE? - 1

bond pads

03/17/2019

bond pade

- Along the short side
 - Bending affects pixel matrix only
 - Bonding area is glued: flat and secured
 - Variable curvature (down to 1 cm radius)

Bent chip electrical tests

- Laboratory tests to characterize bent ALPIDEs in terms of thresholds and fake-hit rate
 - different set-ups are tried
 - experience on handling is gained
- The curvature effect is not noticeable on:
 - pixel thresholds, FHR, pixel responsiveness
 - tested down to below nominal bending radius
- Multiple chips successfully installed and ۲ tested in lab, 2 of them sent to DESY for testbeam

50 µm-thick ALPIDE (sandwiched between two Kapton foils)

Bent chip in ALPIDE-based beam telescope

Mar '20 Testbeam analysis: residuals

Mean of the residuals:

- Column direction invariant to rotation around column axis
- Row direction compatible with cylindrical geometry model up to 35 µm

RMS of the residuals:

pixels)

- Higher where chip is glued to carrier card due to scattering
- Row direction increases with the incident angle of the beam

Mar '20 Testbeam analysis: detection inefficiency

- Below a threshold of 100 e-, inefficiency is generally lower than 10-4
- Above 100 e-, the inefficiency increases with decreasing beam incident angle (increasing row number)

Curvature measurements

First CMM measurement Second CMM measurment

03/17/2019

Fit: r=16.9 mm, y0=2.3 mm

Fit: r=24.4 mm, y0=1.8 mm Data analysis result: r=22.0 mm

2 (mm) 2

1

0

ts.infn.it - I BL Brown Bag

34

Mar '20 Testbeam analysis: detection inefficiency

How to bend a 50 μm thick ALPIDE? - 2

- Along the long side
 - Affecting matrix and periphery
 - Stretches the CMOS circuitry
 - Completely glued onto support
 - Fixed curvature (1.8 cm radius)

 Needs a custom setup to interconnect the curved chip after bending

How to bend a 50 μm thick ALPIDE? - 2

Along the long side

- Affecting matrix and periphery
- Stretches the CMOS circuitry
- Completely glued onto support
- Fixed curvature (1.8 cm radius)

- Needs a custom setup to interconnect the curved chip after bending
- I-V and response immediately checked after interconnecting the chip: works

- >10 chips successfully bent and tested.
- Handling is delicate but feasible

Aug '20 Testbeam

Aug '20 Testbeam

Online monitoring Correlation bent chip – reference plane

• Analysis ongoing

hitmap

giacomo.contin@ts.Inm.It - LBL Brown Bag

2021 Testbeam plans

Several Testbeams planned for:

- µITS3 (6 bent chips, various radii)
- Different interconnection technologies
- New MLR1 test structures
- Large-area ALPIDE-based Superchip

Moving to a larger size: ALPIDE Super-chip

- Idea: cut out large "super chips" from a wafer (140x60 mm²)
- Matching the size of 1/2 ITS3 half-layer
- 9 x 2 chips to interconnect, power and test
- Thinned down to 30-40 μm

Wire-bonding based interconnections for the first 2 chips

• Toward the final chip configuration: only end-of-chip @UniBA - PoliBA - INFN

CRALPIDE Wafer Mar

Bent silicon interconnections: wire-bonding

• Wire-bonding after bending

Bent ALPIDE, wire-bonded to bendable FPC, connected to interface card

Bent ALPIDE, wire-bonded

- **Bending after wire-bonding** (reversible)
 - Useful for validating the mechanical stability
 - Bent around a cylinder and reverted flat
 - Satisfactory pull-test after multiple bending
 - Chip still alive and communicating

@IPHC

Bent silicon interconnections: SpTAB

Bending after SpTAB bonding

- Easily allows for bending in different directions
- Doesn't need mechanical support

ALPIDE, SpTAB bonded to microcable

• ALPIDE Super-chip SpTAB bonding is under development

ICE

CBAL PIDE Wafer Man

6 7 8 9 10 11 12 13

Towards the Engineering Module

- Half Layer Sensor wrapped around the vacuum chuck
- Held in position by vacuum + mylar layer
 - At the moment the vacuum is not enough to hold 50um large chip

EM: Engineering Model 1

• Feasibility studies: carbon foam wedges placed and glued on silicon and on exoskeleton

Dummy Silicon Half Layer Sensor 280mmx93.2mmx40 µm

Carbon foam wedge: ERG Duocel [0.06 kg/dm³] Carbon fleece [8g/m²]

Araldite 2011

Cooling

ALPIDE - the MAPS for the ITS2

- Air cooling possible as from ~20 mW/cm²
- ALPIDE already close: ~40 mW/cm²

Cooling

ALPIDE - the MAPS for the ITS2

- Air cooling possible from ~20 mW/cm²
- ALPIDE already close: ~40 mW/cm²
- actually largely sufficient if periphery outside fiducial volume

Breadboard Model: dummy HLS with glued heaters

• Dissipated heat simulated by Foil heaters for thermal test

Where do we stand with material budget?

This is very reassuring and now also input to our MC!

Outline

- A free-standing detector based on curved silicon
 - The idea behind ALICE ITS3
 - Bent silicon performance
 - R&D highlights
- Timing with silicon
 - LGAD, SPAD/SiPM, FD-MAPS
 - Characterization campaign towards a 20 ps resolution

Includes material and help from: M. Suljic (CERN), M. Mager (CERN), G. Giacomini (BNL), L. Pancheri (UniTN -INFN), F. Carnesecchi (UniBO – INFN), R. Preghenella (UniBO – INFN), C. Gargiulo (CERN), and many others ...

Fast timing silicon detectors in Trieste (and in the ALICE community)

R&D activities in Trieste started from concurring motivations:

- Scientific interest within the local group for this new silicon application
- Availability of new AC-LGAD prototype samples (from BNL)
- Experimental push from the ``ALICE community and beyond``
- Growing interest in other fields (medical applications, industry, ...)

Goal: build up experience on timing sensor characterization

• Early definition of activity plan - open to suggestions for path forward

ALICE3 Experiment for Post-LS4 LHC

"All"-silicon apparatus

- Central/forward tracking
 - ~10 layers based on MAPS
- Particle identification
 - Time-of-flight layers in the central barrel based on silicon timing sensors
 - Pre-shower detector based on dense material and MAPS

Specifications for TOF layers:

- outer layer, currently at ~1.0 m
- inner layer, currently at ~20 cm
- radii to be tuned for continuous PID performance (e/ π)
- 20 ps resolution

TOF performance simulations

Pythia8, inelastic pp, 14 TeV

primary particles

|η| < 1.44 B = 0.5T

TOF layer cell size Vs fake match probability

From simulation studies:

Inner TOF layer (22 cm)

- 1 cm pixel pitch is too big
- 1 mm pixel pitch fake match probability < 1%

R. Preghenella – INFN Bo

TOF layer cell size Vs fake match probability

From simulation studies:

Inner TOF layer (22 cm)

- 1 cm pixel pitch is too big
- 1 mm pixel pitch fake
 match probability < 1%

Outer TOF layer (102 cm)

pixel pitches smaller than
 1 mm are not needed,
 negligible contribution
 from tracking resolution

R. Preghenella – INFN Bo

Pixel sensors (in parallel)

Large menu of silicon timing technologies

Setting up a characterization campaign to answer some questions:

(AC-)LGAD

SPAD/SiPM

• How does it perform with particles?

FD-MAPS

Could we use it for 4D-tracking?

Potentially achieve:

- 100% Fill Factor
- High spatial resolution with 200 um pitch •
- Fast timing information at a per-pixel level

G. Giacomini @BNL Instrumentation Div.

(AC-)LGAD measurements campaign

ALICE

- Static characterization
- Fast amplification + waveform an.
 - β irradiation
 - Optical pulsing
 - Laser scan
- Compare flavors
 - Diode
 - LGAD
 - AC-LGAD
- Multi-channel board
 - AC-LGAD performance

Off-the-shelf SiPM with cosmic rays

Working on electronics noise evaluation and "cross-talk" effects

o 53V 200 σ [ps] ▲ 55.5V 180 58V 0 0 160 0 0 140 120 100 30 35 40 45 50 55 60 65 25 CFD % Vnoise $\sigma_{\text{measured}} = \sigma_{\text{intrinsic}} \otimes \text{electronics noise jitter}$ \otimes agaisition jitter dV/dt@threshold

3 mm

Front-end electronic: cividec (~100 amplification) Readout: oscilloscope

F. Camesecchi – INFN Bo

SPAD prototypes with particle beams

- TowerJazz SPAD prototypes @CERN
- Included in custom made interface boards
- Ready to join the next ITS3 Testbeams
 - Electrons at DESY
 - Pions at CERN PS + SPS

Fully depleted MAPS

ARCADIA monolithic sensors @Trento

- Fully depleted substrate: charge collection by drift
- Process validated on 100 300μm thick substrates,
 25 and 50μm pitch
- New test structures with 10µm pitch on 50µm substrate optimized for timing have been designed.
 Expected delivery: April/May 2021

- Signal with IR pulsed laser (1060nm, < 100ps PW) on pixel test structures with 50µm pitch on 300µm substrate
- Measurements with sources and beam to be extended the new test structures

L. Pancheri, INFN Trento & UniTN (IEEE Tran. Electron Dev., Vol. 67, No. 6, 2020)

Sensor availability for the testing campaign

Sensors currently available:

- SiPMs from HPK: S12572-050P, S13360-3050VE
- LGADs from HPK, FBK and BNL (and reference standard diodes): 50 μm, 1x1 mm², 1x3 mm², 2x2 mm², 3x3 mm²
- AC-LGADs from BNL: 50 µm, 2x2 mm²
- Pixel sensor test structures (from the <u>SEED</u> project) with 100µm and 300µm thickness, 25µm pitch

Foreseen for March:

• SiPM, SPADs from FBK: various sizes (15-30 µm) and shapes

Later (early Summer):

• Pixel sensor test structures (from the <u>ARCADIA</u> project) with **50µm thickness**, **10µm pitch**

Conclusions

- A year of R&D for the ALICE ITS3 produced exciting results
- A truly-cylindrical detector based of curved silicon seems possible
- The ITS3 is a baseline for future detectors such as the EIC Experiments and ALICE3 @LHC
- It is also a good moment to push the R&D on timing silicon sensors and try to include these technologies in such experiments

Thank you for your attention...

Thinning and bending of single ALPIDEs

- Silicon Deep Reactive Ion Etching (DRIE) of ALPIDE
 - Thinned down to 20-30-50-56 µm
 - Cantilever bending test to breakage
 - 3&4 points test hard to apply on thin small area chips

Thickness	Force at break [cN]					
20um	14.8	11.45	16.92			
30um	35.95	29.25	35.07			
50um	56.04	65.03	124.24			
56um	110.5	129.35				

Change in Alpide (LTU & IPHC A8, A4, B3 & B2) current (Ia & Id) vs bending (long axis) induced Strain

