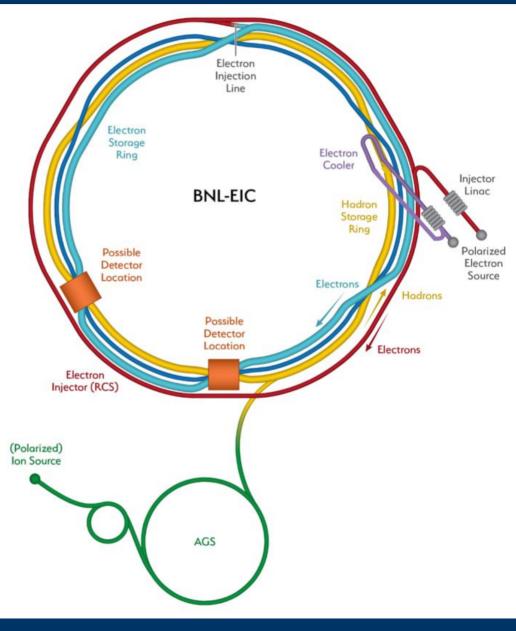


Challenges of Electron Ion Collider (focus on detector challenges)

Sai Neha Santpur 290E Spring 2021


28 April 2021

What is EIC?

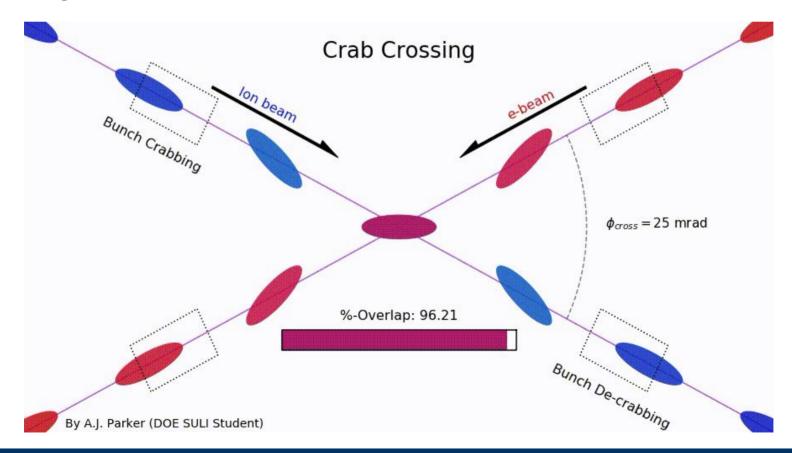
- Electron Ion Collider (EIC) is a facility being built at BNL to be operational ~2030
- Design requirements:
 - Capable of colliding polarized electrons, light ions and unpolarized heavy ions
 - Center of mass energy range from ~20 to 140 GeV
 - High luminosity for ep collisions (~ 10^{34} cm⁻² s⁻¹)
 - Single interaction region and integrated detector are officially in plan (with capability of adding one more)

EIC design

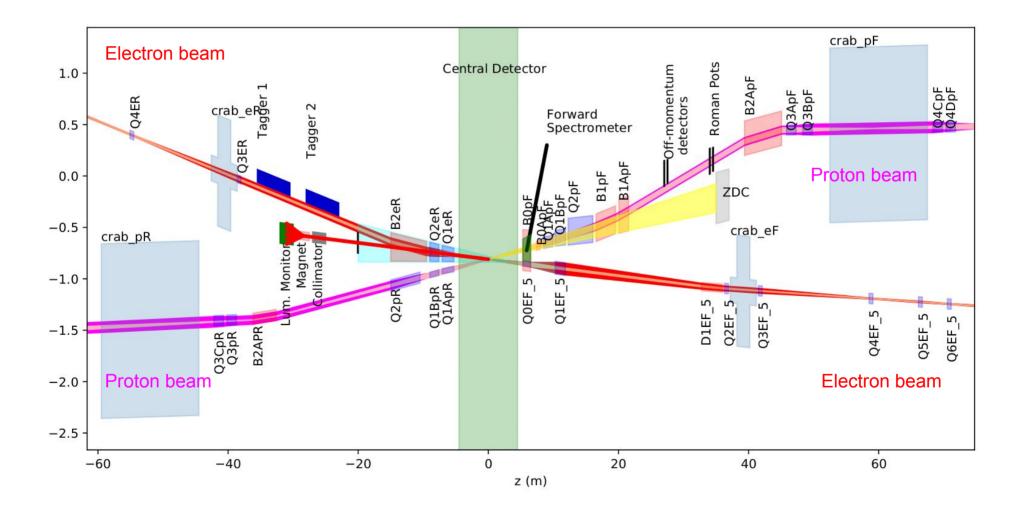
- Use the existing RHIC ring as Hadron Storage Ring
- Add an electron source and LINAC
- Construct a new Electron Storage Ring
- Add crab cavities near the Interaction Point (IP) to ensure high luminosity

Note on crossing angle

- At majority of collider experiments that I am familiar with, the beams collide head on at the IP
 - True for ATLAS, CMS collisions etc



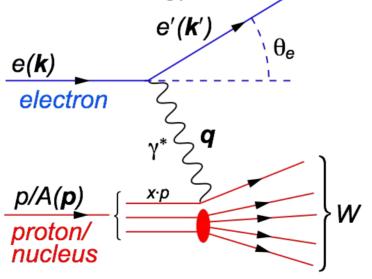
- This will reduce the luminosity
- Beams cross at 25mrad angle
- Use crab cavities to recover a head on collision!


Crab cavities

- Rotating the bunches before collision recovers the head-on collision and mitigates the luminosity loss
- Crab cavities are transversely deflecting RF resonators which perform crabbing or bunch rotation

EIC IP

• Interaction Point top down view


S. N. Santpur

Physics of interest

- All things QCD!
 - How does the mass of the nucleon arise?
 - How does the spin of the nucleon arise?
 - What are the emergent properties of dense systems of gluons?
 - How are the sea quarks and gluons and their spins, distributed in space and momentum inside the nucleon?
 - 0

Detector wishlist at EIC

- The electron and ion beams at EIC are asymmetric
 - One configuration has 18 GeV electron beam colliding with 275 GeV proton beam to give 140 GeV COM energy
 - Boosted kinematics suggesting high activity at large eta
 - For most events, the scattered electron gives very important kinematic information. Important to be able to reconstruct it
 - Need a detector with large eta coverage!
 - Note that we want special forward taggers for hadrons and leptons in the forward region (after scattering)

Rapidity of scattered electron

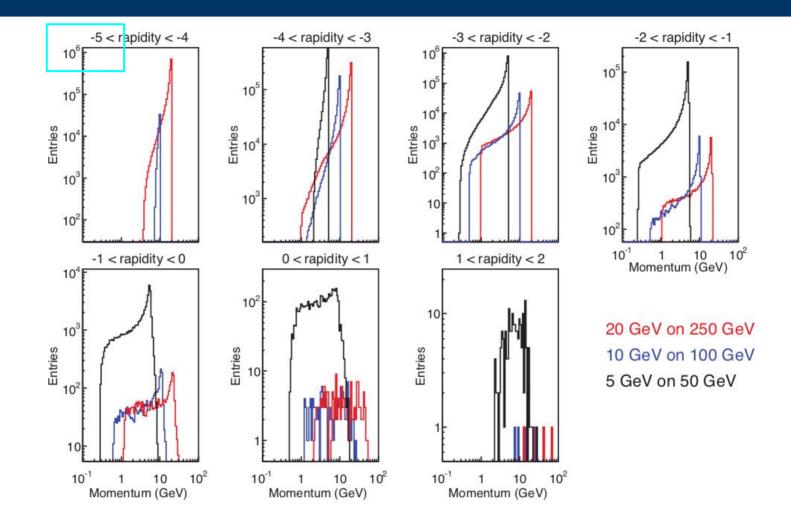


Figure 6.3: The momentum distribution for the scattered lepton for different center-of-mass energies and different rapidity bins in the laboratory frame. The following cuts have been applied: $Q^2 > 0.1 \text{ GeV}^2$, 0.01 < y < 0.95 and -5 < rapidity < 5

Apr 28, 2021

Rapidity of photon from Compton scattering

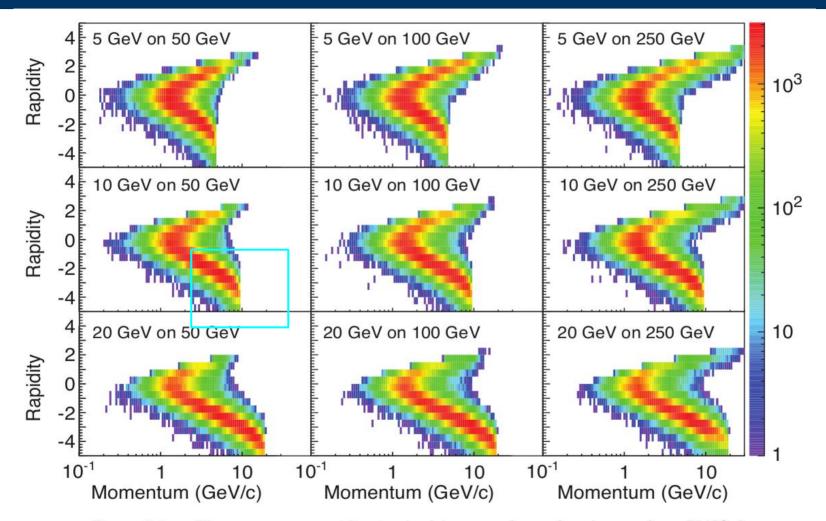
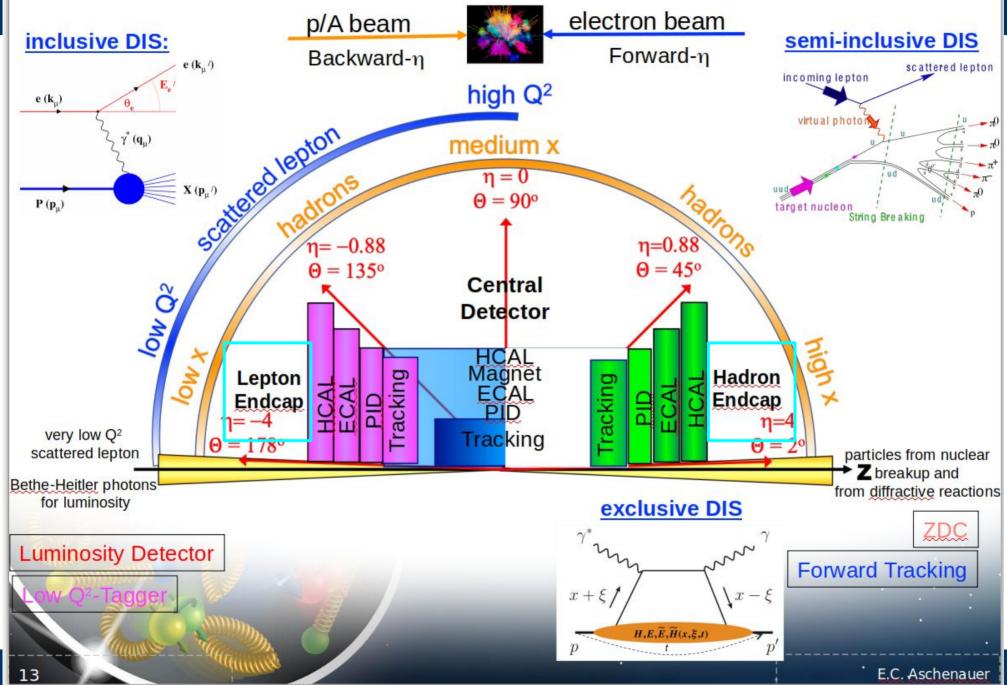


Figure 6.4: The energy vs. rapidity in the laboratory frame for photons from DVCS for different center-of-mass energies (top) and the correlation between the scattering angle of the DVCS photon and the scattered lepton for three different center-of-mass energies. The following cuts have been applied: $Q^2 > 1.0$ GeV², 0.01 < y < 0.95, $E_{\gamma} > 1$ GeV and -5 < rapidity < 5.

Apr 28, 2021

Detector wishlist at EIC

- The electron and ion beams at EIC are asymmetric
 - One configuration has 18 GeV electron beam colliding with 275 GeV proton beam to give 140 GeV COM energy
 - Boosted kinematics suggesting high activity at large eta
 - For most events, the scattered electron gives very important kinematic information. Important to be able to reconstruct it
 - Need a detector with large eta coverage!
 - Note that we want special forward taggers for hadrons and leptons in the forward region (after scattering)
- COM energies range from 20-140 GeV!
 - We need a detector to reconstruct many particles like electrons, photons, hadrons (distinguishing pions, kaons, protons etc) and muons at wide range of energies and large acceptance

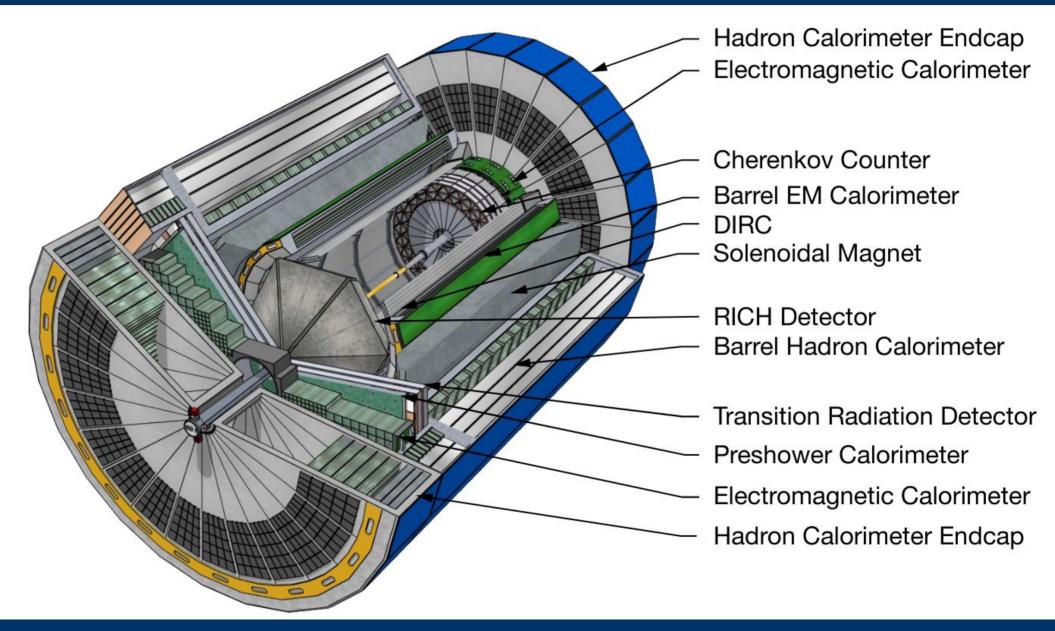

Detector wishlist at EIC

- The electron and ion beams at EIC are asymmetric
 - One configuration has 18 GeV electron beam colliding with 275 GeV proton beam to give 140 GeV COM energy
 - Boosted kinematics suggesting high activity at large eta
 - For most events, the scattered electron gives very important kinematic information. Important to be able to reconstruct it
 - Need a detector with large eta coverage!
 - Note that we want special forward taggers for hadrons and leptons in the forward region (after scattering)
- COM energies range from 20-140 GeV!
 - We need a detector to reconstruct many particles like electrons, photons, hadrons (distinguishing pions, kaons, protons etc) and muons at wide range of energies and large acceptance
- Other necessary features:
 - Radiation hard detectors (less than LHC)
 - efficient readout rate (no pileup as collision rate is every 500kHz=2000ns)
 - costs around \$250M

How would your detector look like based on these requirements?

Take a minute to think about it.

EIC General Purpose Detector: Concept



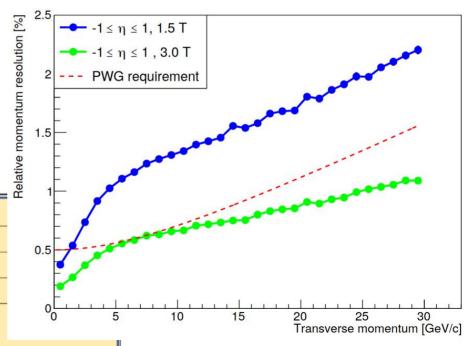
Detector design requirements

								Tracking			Eli	ectrons and Photons			/K/p		CAL	10000
η	θ		No	menclature	Resolution	Relative Momentum	Allowed X/X _O	Minimum-pT	Transverse Pointing Res.	Longitudinal Pointing Res.	Resolution $\sigma_{\rm E}/{\rm E}$	PID	Min E Photon	p-Range (GeV/c)	Separation	Resolution $\sigma_{\rm E}/{\rm E}$	Energy	Muons
< -4.6			Far Backward Detectors	low-Q2 tagger														
-4.6 to -4.0		↓ p/A									Not Accessible	e						
-4.0 to -3.5					Ţ.			e			Reduced Perform	ance	<i></i>	14.		40 - C		
-3.5 to -3.0						σp/p					10/ 15 0 2 50/ 1/5 0							
-3.0 to -2.5					2	<u>~0.2%×p⊕5%</u>		70-150 MeV/c			<u>1%/E ⊕ 2.5%/√E ⊕</u> <u>1%</u>	<u>π suppression up to</u> <u>1:1E-4</u>	20 MeV			E09/ /		
-2.5 to -2.0				Backward Detector	S	ap/p~		(B=1.5 T)						<u>≤ 10 GeV/c</u>		<u>50%/</u> √E⊕10%		Muons useful
-2.0 to -1.5						0.04%×p⊕2%		Construction of the Construction of the	<u>dca(xy) ~ 40/pT</u>	<u>dca(z) ~ 100/pT</u>	<u>2%/E ⊕(4-8)%/√E</u>	π suppression up to	50 MeV					for bkg,
-1.5 to -1.0									<u>μm ⊕ 10 μm</u>	<u>μm ⊕ 20 μm</u>	<u>⊕ 2%</u>	<u>1:(1E-3 - 1E-2)</u>	Section 1					improve resolution
-1.0 to -0.5											and the state of the							resolution
-0.5 to 0.0			Central	Barrel		σ _p /p	~5% or less X	200 MeV/c	<u>dca(xy) ~ 30/pT</u>	<u>dca(z) ~ 30/pT μm</u>		<u>π suppression up to</u>	100 MeV	≤ 6 GeV/c	<u>≥3σ</u>	100%/	~500MeV	
0.0 to 0.5			Detector	<u>Barrer</u>		<u>~0.04%×p⊕1%</u>	01001100011	2001101/0	<u>μm ⊕ 5 μm</u>	<u>⊕ 5 μm</u>	<u>√E ⊕ (2-3)%</u>	<u>1:1E-2</u>				<u>√E+10%</u>		
0.5 to 1.0																		
1.0 to 1.5						a lo			<u>dca(xy) ~ 40/pT</u>	des(s) = 100 (sT								-
1.5 to 2.0						<u>σp/p</u> ~0.04%×p⊕2%		70 - 150 MeV/c	<u>μm ⊕ 10 μm</u>	<u>dca(z) ~ 100/pT</u> μm ⊕ 20 μm	2%/E ⊕ (4*-12)%/	2				5000		
2.0 to 2.5				Forward Detectors		- Second Street Co		<u>(B = 1.5 T)</u>			<u>2%/E⊕ (4'-12)%/</u> √E⊕ 2%	<u>3σ e/π up to 15</u> <u>GeV/c</u>	50 MeV	<u>≤ 50 GeV/c</u>		50%/ VE+10%		
2.5 to 3.0						σ <u>p</u> /p												
3.0 to 3.5						<u>~0.2%×p⊕5%</u>												
3.5 to 4.0				Instrumentation to separate charged particles from photons							Reduced Perform	ance						
4.0 to 4.5		te		C							Not Accessible							14
> 4.6		-codd ¹⁹	Far Forward Detectors	Proton Spectrometer Zero Degree Neutral Detection														

- Tracking from 200 MeV in barrel (3T magnet) and >70 MeV in forward/backward detector (1.5T magnet)
- ECAL to record electron and photon ID shower
- HCAL to measure hadrons
- Particle distinction for pions/Kaons/protons in few GeV range
- Far forward electron tagger to measure the scattered electrons
- Proton spectrometer to measure far forward protons

EIC detector

Subdetectors


system	system components	reference detectors
	vertex	MAPS, 20 um pitch
tracking	barrel	TPC
tracking	forward & backward	MAPS, 20 um pitch & sTGCs ^c
	very far forward	MAPS, 20 um pitch & AC-LGAD ^d
	& far backward	
	barrel	W powder/ScFi or Pb/Sc Shashlyk
	forward	W powder/ScFi
ECal	backward, inner	PbWO ₄
	backward, outer	SciGlass
	very far forward	Si/W
	barrel	High performance DIRC & dE/dx (TPC)
	forward, high p	double radiator RICH (fluorocarbon gas, aerogel)
h-PID	forward, medium p	double faulator Kierr (nuorocarbon gas, aeroger)
	forward, low p	TOF
	backward	modular RICH (aerogel)
	barrel	hpDIRC & dE/dx (TPC)
e/h separation	forward	TOF & areogel
at low p	backward	modular RICH
	barrel	Fe/Sc
HCal	forward	Fe/Sc
ncai	backward	Fe/Sc
	very far forward	quartz fibers/ scintillators

Apr 28, 2021

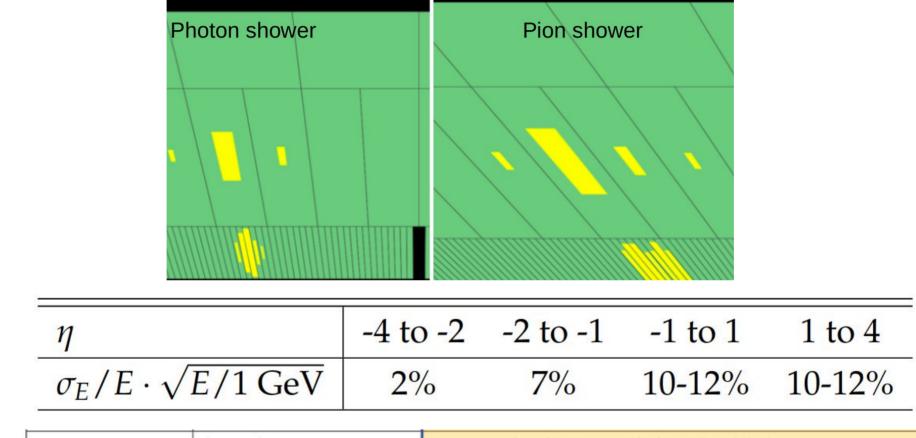
Tracking

- Silicon technology is used for vertex tracking
 High granularity and low material budget
- TPC is used for barrel tracking (Ezra's talk <u>here</u>)
 - Good momentum resolution, provides additional particle ID information through dE/dx
- Forward and backward detectors are also silicon based MAPS sensors
 ∑^{2.5} → -1 ≤ η ≤ 1, 1.5 T
 - Low dissipation allows
 operation at room temperature
 =low material budget

system	system components	reference detectors		
	vertex	MAPS, 20 um pitch		
tracking	barrel	TPC		
tracking	forward & backward	MAPS, 20 um pitch & sTGCs ^c		
	very far forward	MAPS, 20 um pitch & AC-LGAD ^d		
	& far backward			

Apr 28, 2021

ECAL

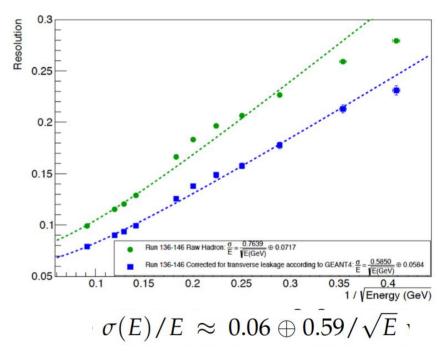

- Requirements:
 - Measure scattered electron kinematics
 - Photon and electron energy measurement
 - electron/hadron separation (together with HCAL)
 - pi0/photon separation (can be achieved with highly segmented presampler)
 - Fast timing, compact, highly granular

η	-4 to -2	-2 to -1	-1 to 1	1 to 4
$\sigma_E/E \cdot \sqrt{E/1 \text{GeV}}$	2%	7%	10-12%	10-12%

	barrel	W powder/ScFi or Pb/Sc Shashlyk
	forward	W powder/ScFi
ECal	backward, inner	PbWO ₄
	backward, outer	SciGlass
	very far forward	Si/W

Apr 28, 2021

ECAL


	barrel	W powder/ScFi or Pb/Sc Shashlyk
	forward	W powder/ScFi
ECal	backward, inner	PbWO ₄
	backward, outer	SciGlass
	very far forward	Si/W

Apr 28, 2021

HCAL

- Requirements:
 - Measure the energy deposition of hadrons

η	EIC Speci	ifications	Conservative option		
	$\sigma_E/E, \%$	E_{min} , MeV	$\sigma_E/E, \%$	E _{min} , MeV	
-3.5 to -1.0	$45/\sqrt{E}+7$	500	$50/\sqrt{E} + 10$	500	
-1.0 to +1.0	$85/\sqrt{E}+7$	500	$100/\sqrt{E} + 10$	500	
+1.0 to +3.5	$35/\sqrt{E}$	500	$50/\sqrt{E} + 10$	500	

	barrel	Fe/Sc
HCal	forward	Fe/Sc
ПСаі	backward	Fe/Sc
	very far forward	quartz fibers/ scintillators

Apr 28, 2021

PID

- Very critical to the entire experiment
- Needs to provide good distinction between particles and low contamination
- To distinguish
 - Electrons from photons -> Tracker coverage 4pi
 - Electrons from charged hadrons -> Use ECAL+HCAL for this
 - Charged pions, kaons and protons -> mainly Cherenkov detectors
 - See Ryan's talk <u>here</u>
 - Note that other technologies are used at low energies

	barrel	High performance DIRC & dE/dx (TPC)		
	forward, high p	double radiator RICH (fluorocarbon gas, aerogel)		
h-PID	forward, medium p	double faciator Rich (indolocarboit gas, aeloger)		
	forward, low p	TOF		
backward		modular RICH (aerogel)		
	barrel	hpDIRC & dE/dx (TPC)		
e/h separation forward		TOF & areogel		
at low p	backward	modular RICH		

Apr 28, 2021

Summary

- The EIC enables us to probe QCD in a completely new fashion
- The preliminary detector design is in place
 - Many subdetector technologies have been considered before choosing the reference detector
 - There are ongoing studies to finalize the number of layers, pixel size and other details
- EIC has a capability of an additional IP and has scope for another detector
 - Scientific community is supporting this idea and some of the alternate detector technologies can be used for this detector

Accelerator Technical Reviews	Spring Autumn 2021
Start Preliminary Design	April 2021
Detector Proposals Submitted	December 2021
Selection of Project Detector	March 2022
Start Earned Value Tracking	Summer 2022
Clarify In-kind Deliverables - Agreements	Summer/Fall 2022
Goal for CD-2 Approval	January 2023
Goal for CD-3 Approval	March 2024
Goal for CD-4 Early Project Completion	July 2031 E.C. Aschenauer

Apr 28, 2021

References

- EIC Yellow Report
- EIC CDR
- Electron Ion Collider: The next QCD frontier
- Special thanks to APS conference EIC session X04 (If you have registered for the conference, you have access to these)