Triggering at the Large Hadron Collider Irina Ene

PH290E, 21 April, 2021

Event rates at LHC

- Typical collision "mundane"
 - ~ 1 GHz at $\mathscr{L} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- "Interesting" physics happens at much lower rates
 - 6-8 orders of magnitude
- Higgs produced in 1 out of 10⁹ collisions

James Stirling

How to identify interesting events?

- Mostly hadrons with low $p_{\rm T}$
- Interesting events usually have high lacksquare $p_{\rm T}$ objects
 - $H \rightarrow \gamma \gamma$ with $p_{\rm T}(\gamma) \sim 50 60 {\rm ~GeV}$
 - $W \rightarrow e\bar{\nu_{\rho}}$ with $p_{\rm T}(e) \sim 30 40 {\rm ~GeV}$
 - Use as signatures
 - electrons, photons, muons, jets, missing transverse energy

Simulated $H \rightarrow 4\mu + 17$ minbias events

Frank Winklmeier slides

Data rates at LHC

- 25 ns bunch separation \rightarrow **40 MHz** bunch crossing rate
 - Rate at which receiving new data
- ~ 1 MB detector data per event
- Assume 100 efficient days (10⁷ seconds) per year @ 40 TB/s
- $\sim 10^8$ TB per year to store (and analyze)
- Bandwidth/storage would not be a problem for 1 kHz rate

40 TB/s bandwidth

Adam Abed Abud slides

- Collects data from the detector
- Transfer data to storage for offline analysis

- orders of magnitude)

5

Requirements for trigger system

- High efficiency \rightarrow don't want to lose processes of interest
- **Robust** \rightarrow selection not biased in a way that affects the physics outcome
- Large rate reduction \rightarrow limitations of DAQ and offline computers
- **Flexible** \rightarrow to adapt to changing physics goals
- Affordable \rightarrow resources are finite

Requirements for trigger system

The earliest trigger... The graduate student

- High efficiency? Reflexes too slow X
- Large reduction of rate?
 - Depends on your student...
- Robustness?

Gets distracted, tired, hungry, ... X

Highly flexible?

Depends on your student... 🤞

Affordable?

Inspired by Dinyar Rabady <u>slides</u>

Inspired by Dinyar Rabady <u>slides</u>

Trigger might send signal while DAQ still processing previous event

Dead-time

- Dead-time = fraction of acquisition time when no (new) events can be processed (even if they are interesting)
 - Happens when processing step takes finite time to complete
- We want high efficiency $\!\rightarrow\!f\!\tau\ll 1$

- f = average input rate
- ν = readout rate

• τ = time to process one event

•
$$f - \nu = f \nu \tau \rightarrow \nu = \frac{f}{1 + f \tau} < f$$

Brian Petersen slides

Inspired by Dinyar Rabady <u>slides</u>

But digitization dead-time could still be important

Analogue cables could probably work in a simple case

Inspired by Dinyar Rabady <u>slides</u>

Latency = time to form and distribute trigger decision

Must delay signals until trigger decision is ready

Complex selection \rightarrow longer latency

Inspired by Dinyar Rabady <u>slides</u>

Can store the data in memory until trigger decision ready

Pre-trigger: start digitizers without delay

Trigger decision can arrive later

LHC clock = pre-trigger

Inspired by Dinyar Rabady slides 14

A (very simple) digital trigger example

Inspired by Dinyar Rabady slides 15

Implementation overview Multi-level trigger

- Want to reduce rate from 40 MHz down to ~1 kHz
- Multiple levels of triggers, where at each level decrease output rate and increase processing times
 - Earlier levels: high rates, short latency
 - Higher levels: lower rates, longer latency
- <u>High efficiency at all levels</u> rejected <u>events are lost forever</u>

LHC Run-1

Experiment	# Trigger Levels
ATLAS	3
CMS	2
LHCb	3
ALICE	4

Implementation overview **Multi-level trigger**

- First-level trigger
 - High rate, low latency
 - Custom electronics \bullet
 - Small subsample of detector data
 - Relatively simple algorithms
- High-level trigger
 - Lower rate, relaxed latency requirements
 - Commercial computing clusters
 - Flexible, more complex algorithms

Leonard Apanasevich <u>slides</u>

Implementation overview **Example: ATLAS**

Frank Winklmeier slides

Level-1 Trigger Latency

- Latency = time from bunch crossing until trigger decision reaches detector
- Lot of time spent on data transmission

Level-1 Trigger **Pipelines**

event at a time

Can't deliver a complex trigger decision in 25 ns and can't process only one

Dinyar Rabady <u>slides</u>

Level-1 Trigger **Pipelines**

- Can't deliver a complex trigger decision in 25 ns and can't process only one event at a time
- **Pipeline** = multiple processing steps, events flow from step to step
 - First In First Out
- **Parallel** processing of the many inputs as much as possible
 - Processing step should fit within one bunch crossing period

Alessandro Cardini slides

Level-1 Trigger **Electronics**

- Very fast custom-made electronics (parallel processing)
 - **ASICs** (Application-Specific Integrated Circuits)
 - Very fast
 - Not reprogrammable
 - Long development cycle
 - Very expensive for low volume

- **FPGAs** (Field-Programmable Gate Arrays)
 - Still very fast (O(100 MHz))
 - Reprogrammable
 - Hard to program
 - Very expensive for high volume

Level-1 Trigger **Electronics: ATLAS Muon Barrel Trigger ASIC**

Level-1 Trigger **Electronics: ATLAS L1Calo PreProcessor**

KIP (Heidelberg University) website

~120 X PreProcessor module (PPM)

Run-2

Level-1 Trigger **Electronics: ATLAS L1Calo PreProcessor**

PreProcessor Module

Level-1 Calorimeter Pre-processor crate

Full L1 calorimetery system: ~27 VME crates

~8 VME crates

Brian Peterson slides

Analogue trigger cables received in electronics cavern

Good cable management is very important!

High-Level Trigger Example: ATLAS

- Software-based running on large PC farm
- O(10k) cores running in parallel (events are independent)
- HLT processing $\ll 1s \rightarrow can't$ use offline reconstruction (~10 s per event)
- Step-wise processing with early rejection (stop processing as soon as one step fails)
 - Fast reconstruction
 - offline tools + trigger specific configs
 - guided by L1 Rols (confirm L1 result); combine with info from other detectors (tracker)
 - Precision reconstruction
 - very close to offline reconstruction
 - detector data at full granularity
- If HLT accept, the event data is written out

Trigger Chain

Typical HLT node: 2x12-core Intel Xeon Haswell → 96 cores/box

48 GB RAM, 10Gb Ethernet 4 motherboards in 2U box

Frank Winklmeier slides

Summary

- Challenging environment at LHC greatly influences design of trigger system
 - Large event rate
 - Large data volumes
 - Large rejection factors
- Key issues: <u>dead-time</u>, <u>latency</u>, <u>synchronization</u>, <u>pipelined</u> trigger/read-out
- **Multi-level trigger architecture** lacksquare
 - first-level: fast, parallel custom electronics \rightarrow trigger decision every 25 ns
 - high-level: large commercial computing farm to process events with offline-like algorithms

Resources

- "Triggering at High Luminosity Colliders" <u>https://arxiv.org/abs/0704.2548</u>
- "ATLAS detector and physics performance" TDR <u>https://cds.cern.ch/record/391176/files/cer-0317330.pdf</u>
- ATLAS RPC and L1 muon barrel trigger <u>https://arxiv.org/pdf/2103.01029.pdf</u>
- "Storage Systems for DAQ" <u>https://indico.cern.ch/event/828931/contributions/3469925/</u>
- "Trigger architectures and hardware" <u>https://indico.cern.ch/event/828931/contributions/3469931/</u>
- "Introduction to the CMS Trigger" <u>https://indico.cern.ch/event/58768/contributions/2057235/</u>
- "Introduction to Trigger for Physics Workshop" <u>https://indico.cern.ch/event/558579/contributions/2253609/</u>
- "Trigger and Data Acquisition" <u>https://indico.cern.ch/event/115062/</u>
- "Trigger and Data Acquisition at the Large Hadron Collider" <u>http://www.le.infn.it/lhcschool/talks/Cardini-1.pdf</u>
- "The ATLAS Trigger & Data Acquisition System" <u>https://indico.cern.ch/event/860971/contributions/3626496/</u>
- "LHC experiments Trigger, Data-Taking and Computing" <u>https://indico.mpp.mpg.de/event/5470/</u>
- "Electronic, Trigger and Data Acquisition" <u>https://indico.cern.ch/event/190068/</u>

Backup

Particle ID

https://indico.cern.ch/event/77805/attachments/1057246/1507528/CERN100120-v2.pdf

Level-1 Trigger **FPGA Design**

- Example of a WAIT statement (Programming Language VS. HDL) •
 - In programming language (e.g. C) (Unix, #include <unistd.h>) • sleep(5); // sleep 5 seconds
 - In HDL (e.g. VHDL): ٠
 - Not synthesizable (only for simulation test benches)

wait for 5 sec; -- handy for TB clocks

Synthesizable (for simulation and/or FPGA implementation)

```
simple_delay_counter : process (delay_rst, delay_clk, delay_ena)
begin -- process
  if delay rst = '1' then
    s_count <= delay_ld_value;</pre>
   s delay done <= '0';
  elsif rising_edge(delay_clk) then
    if delay_ena = '1' then
      if delay_ld = '1' then
        s_count <= delay_ld_value;</pre>
      else
        s_count <= s_count - 1;</pre>
      end if;
    end if;
    if s count = 0 then
     s delay done <= '1';</pre>
    else
     s_delay_done <= '0';</pre>
    end if;
 end if;
 end process;
```


Trigger efficiencies

https://indico.cern.ch/event/558579/contributions/2253609/attachments/1359832/2058795/20161025-TriggerWorkshop-Intro.pdf

- Selection efficiency $\epsilon_{\text{trigger}} = \frac{N_{\text{trigger}}}{N_{\text{offline}}}$
 - as high as possible
 - bias free
 - known as precise as possible
- Measure by
 - tag-and-probe
 - trigger on one particle, see how well you do on second
 - boot-strap
 - use looser trigger
 - orthogonal
 - trigger on one signature, measure a different one
 - simulation

ATLAS Trigger for Run-3

https://indico.cern.ch/event/860971/contributions/3626496/attachments/1971759/3280808/Trigger_CBernius_Induct200120.pdf

- L1Calo Run 3 upgrade with digital processors (FEXs)
 - better isolation
 - better pile-up and background rejection
- Will free up part of the L1 bandwidth to be used by other triggers
- Challenge to commission the new L1Calo (and L1Topo) system in the beginning of Run 3 with the Run 2 system running in parallel

- In Run 2: AthenaMP (MultiProcessing)
- Run 3 software is based on Multi-Threading (MT) which means algorithms using data from one event can be parallelized and multi-events can also run in parallel (AthenaMT/release 22/master)

