Background Rejection in Ge 0vββ Experiments

Ryan Gibbons Physics 290E April 14, 2021

Double Beta Decay

- ββ (2vββ)
 - $2n \rightarrow 2p + 2e^- + 2\bar{\nu}$
 - Measured in ~ 30 isotopes
- 0νββ
 - $2n \rightarrow 2p + 2e^-$
 - Theorized process that requires Majorana neutrinos
 - i.e., no distinction between $\bar{\nu}$ and ν
 - v mass mechanism not understood \rightarrow see-saw mechanism?
 - Matter-antimatter asymmetry → Leptogenesis?

Detecting $0v\beta\beta$

- $0\nu\beta\beta$ signal: small peak at $Q_{\beta\beta}$
 - v's energy transferred to electrons
- So pick a source and wait?
 - Not so fast!
 - $\beta\beta$ T_{1/2} ~ 10²¹ years
 - $0\nu\beta\beta T_{1/2} \sim 10^{28}$ years?

- Expected signal size: ~ 1 counts/(t yr)
 - Requires near-zero background!

Basic Experimental Design

- Typically use large source: ~ 100 kg 1 t
- Underground experiment
 - Block cosmic rays
- Radiopure materials
 - Minimize exposure and volume
- Efficient active background rejection

MAJORANA Demonstrator

Background Sources

- Long-lived chains
 ²³⁸U, ²³²Th
- Above ground activation of materials
 e.g., ⁶⁰Co
- Cosmic muons

Ge Based Experiments

- Use Ge detector enriched with ⁷⁶Ge source
 - ~ keV resolution in ROI, ~2 MeV (~0.1%)
 - Easy to create high-purity detectors
 - · Ge detectors are well studied
- Experiments:
 - Past: Heidelberg-Moscow, IGEX
 - Recent: GERDA, MAJORANA
 - Upcoming: LEGEND

Heidelberg-Moscow (disputed result nullified)

GERDA

- Germanium Detector Array
- 2011-2019 at LNGS
- Final results Sept 2020
 - Exposure: 103.7 kg yr
 - Limit: $T_{1/2} > 1.8 \times 10^{26} \text{ yr}$

GERDA Design

- Ge detectors, 86% ⁷⁶Ge enrichment
- Placed in liquid argon (GERDA II)
 - Active veto
 - Cools detector to 86 K
- Surrounded by water tank
 - Muons, with scintillator panel

GERDA Design

Liquid Argon Veto

- Coincidence detector with Ge
- Every photon counts!

If any of the photosensors detects a signal of at least one photoelectron within about $6\mu s$ of the germanium detector trigger, the event is classified as background. Acci-

arxiv.org/pdf/2009.06079.pdf

LAr Scintillation

- LAr scintillates at 128 nm (VUV)
 - LAr not transparent
 - Photodetectors less efficient
- Need to shift to higher wavelengths

TPB Wavelength Shifting

- TPB coating placed before photodetector
- 128 nm → 425 nm
- Not a perfect solution:
 - Isotropic reemission: automatic 50% loss
 - Degrades over time

Ge PID Summary

- ββ
 - Highly localized inside Ge

•γ

- Compton scatter, long attenuation
- Granularity cut: signal in multiple Ge detectors \rightarrow background
- α and β
 - Mostly surface events, short attenuation
 - Use pulse shape discrimination, A/E

GERDA Background

• 1.8 events/(t yr FWHM) in ROI

LEGEND

- Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay
 - GERDA + MAJORANA
 - Half-life sensitivity: > 10²⁸ yr
 - Phase 1, LEGEND-200, data in 2021(?)

- Background goals in ROI:
 - LEGEND-200: < 0.6 events/(t yr FWHM)
 - LEGEND-1000: < 0.1 events/(t yr FWHM)
- Requires significant R&D

Discovery Potential!

4/14/2021

LEGEND-200 Design

- Similar to GERDA design
 Uses existing site at LNGS.
- Scale up: 200 kg of Ge
- Improved radiopurity
 - MAJORANA electroformed copper

Current R&D: PEN

- Poly(ethylene naphthalate)
- Possible replacement for many inactive components
 - Self-vetoing structural material
- Scintillates at 445 nm
- Wavelengths shifts VUV \rightarrow visible
- Excellent structural properties
- Easy to clean

Current R&D: LAr Xe Doping

- Transfers scintillation to Xe
- 128 nm → 175 nm
- Possible alternative/complement to TPB?
 - No LAr transmission issue
 - Avoids issues of TPB
- Recent result:
 - 10 ppm in 100 L LAr improves light yield by factor of 1.8 https://arxiv.org/abs/2006.09780

Summary and Outlook

- $0\nu\beta\beta$ detection offers insights into new physics
 - See-saw mechanism?
 - Leptogenesis?
- Extraordinary long half-life requires near-zero background
 - Significant R&D challenges
- GERDA and MAJORANA show feasibility of large scale Ge exp
- LEGEND is upcoming 1 ton Ge experiment

References

- Older 0vββ Review Paper
- <u>0vββ Review Paper</u>
- Older GERDA Presentation
- GERDA Background Paper
- Final GERDA results
- MAJORANA Presentation
- LEGEND Presentation
- LEGEND Paper 1
- LEGEND Paper 2
- PEN Presentation
- <u>Recent LAr Xe Doping Paper</u>