Time Projection Chambers (TPCs) and applications

Ezra D. Lesser

7 April 2021

Physics 290E Seminar – Detectors & Experiments

Goals of particle detection & tracking

- Was there a particle(s)?
- What was its trajectory (position)?
- What was its 4-momentum?
- What was its charge?

With what uncertainty do we know the answer to these questions?

Some historical particle detectors

- Cloud chamber (1920s-50s)
 - Discovery of positron, muon, & K meson
 - Spark chamber (1930s-60s)
 - Layers of parallel plates which can be triggered to spark via HV along ionized tracks through gas

Example cloud chamber

- Bubble chamber (1952-present)
 - Invented by Donald A. Glaser (Nobel Prize 1960)
 - Big European Bubble Chamber (BEBC) at CERN in use until 1984
 - Discovery of D meson
 - Used in some modern experimental searches for dark matter / WIMPs

7 April 2021

Wire chambers

Developed by Georges Charpak at CERN in 1968 (Nobel Prize 1992)

- Gas ionization detector
 - Charged particle (T) traversing gas interacts electromagnetically with gas molecules
 - Creation of ion/electron pairs
 - Approximately constant applied electric field between wires (W) and grounding plates (P)
 - Electron/ions drift to wires, which is amplified and read out as a signal (A)
- Second plane of wires can be added in transverse direction to get 2D information

Signal amplification

Electrons/ions first drift along approximately straight field lines

 Amplification happens in high-gradient area near the wires

Electron avalanche

- Original e⁻ has enough energy to create additional electron/ion pairs
- Capacitive coupling between nearby wires is largely negated by the positive signal induced on those wires by the avalanche ^[1]

Drift chamber

Also utilize the **timing** which is required for the electrons/ions to drift to the nearest wire

Increases the accuracy of path reconstruction

But how can we create a 3D image?

- Several layers of wire chambers
 - Can be expensive to reproduce the N chambers required for z-resolution
- Utilize the timing of drift in the z-direction

The Time Projection Chamber (TPC)

First proposed by David R. Nygren at LBNL in 1974^[3]

 V_0 can be

0(100 kV)!

The Time Projection Chamber (TPC)

• First proposed by David R. Nygren at LBNL in 1974^[2]

How to tell if particle has +/- charge? How to identify the particle's momentum?

- Add a magnetic field parallel to the electric field direction
 - Charged particles traversing the TPC will have their bent
 - Thinking classically:

 $\vec{F} = q\left(\vec{v} \times \vec{B}\right) = m\vec{a} \rightarrow qvB\sin(\theta) = \frac{mv^2}{r} \rightarrow r = \frac{p}{qB\sin(\theta)}$

- Radius of curvature is proportional to the momentum with known prefactor
- **Direction** of curvature tells us about the sign of q versus \vec{B}
- Magnitude of magnetic field has to be chosen carefully
 - Larger magnetic field increases curvature → improves resolution for highmomentum tracks, but limits the minimum momentum that can successfully transverse the field

Proportional counter

- Electrical noise in readout electronics can be quite high ^[4]:
- = **primary** ionization (from original atom)
- = secondary ionization (from e^- with E > 100 eV)
 - Equivalent noise charge (ENC) is $O(1000 e^{-})!$
 - Need a noise-free amplification \rightarrow gas amplification
- TPC has applied voltage high enough that each ionization e^{-} causes a Townsend avalanche
- Amplification $O(10^5)$ for $|\vec{E}| \sim 10 \text{ kV/cm}$
- Pulse height is proportional to the energy deposited (dE/dx)

Controlling the electric field

• Knowledge of \vec{E} is required to get an accurate dE/dx calibration

- Add a field cage several metal rings of ΔV between anode & cathode
- Usually must be kept thin to limit the radiation length for incoming/outgoing radiation
- Each ring must be wellinsulated from each other and from the outside environment to prevent discharges
 - Must consider charge build-up and breakdown voltages

https://www.lctpc.org/e8/e57671

Gas selection

- Need an inert gas which is ionized by the radiation
 - Noble gasses are an obvious choice: Argon, Neon, Xenon [expensive!], ...
- e^- move much faster than $A^+ \rightarrow$ build up a net positive charge in the bulk
 - Distorts the field, and can cause fake secondary pulses when ions reach cathode
- Add quench gas to ensure each discharge terminates
 - Hydrocarbons (e.g. methane CH_4), carbon dioxide (CO_2), carbon tetrafluoride (CF_4)
 - Lower affinity to electrons than inert gas; "donates" electrons to positive ions
 - Usually added in a mixture of about ~10% to the inert gas
- This process of adding some small amount of a secondary to a main active bulk is commonly called doping

Electron diffusion

- **Diffusion constant** is one of the essential parameters in choice of gas mixture^[4]
 - Important for separation of tracks & position resolution

 $\left| \vec{E} \right| = 0 \rightarrow$ thermal diffusion $\langle v \rangle_{t} = 0$

 $|\vec{E}| > 0 \rightarrow$ transport & diffusion

Transverse electron motion is limited in part by the magnetic field

$$\sigma_{\parallel} = \sqrt{2dt}$$
$$\sigma_{\perp} = \frac{\sigma_{\parallel}^{2}}{1 + \omega^{2}\tau^{2}}$$

https://lss.fnal.gov/conf/C740805/p58.pdf

 $\sigma = r.m.s.$ normal distance d = vl/3 = diffusion coeff. $l = e^{-}$ mean free path t = total time $v = e^{-}$ speed $\omega = eB/m_e$ = cyclotron frequency $\tau =$ mean collision time D.R. Nygren's original paper:

The first major TPC application

Installed in the PEP-4 experiment at SLAC

• Studied $\sqrt{s} = 24 \text{ GeV } e^+e^-$ collisions in PEP storage ring

MEASUREMENT OF IONIZATION LOSS IN THE RELATIVISTIC RISE REGION WITH THE TIME PROJECTION CHAMBER*

Presented by Bernard Gabioud

PEP-4 TPC Collaboration

H. Aihara⁵, M. Alston-Garnjost¹, D.H. Badtke⁴, J.A. Bakken⁴, A. Barbaro-Galtieri¹, A.V. Barnes¹, B.A. Barnett⁴, B. Blumenfeld⁴, A. Bross¹, C.D. Buchana², W.C. Carithers¹, O. Chamberlain¹, J. Chiba⁵, C-Y. Chien⁴, A.R. Clark¹, O.I. Dahl¹, C.T. Day¹, P. Delpierre¹, K.A. Derby¹, P.H. Eberhard¹, D.L. Fancher¹, H. Fujii⁵, T. Fujii⁵, B. Gabioud¹, J.W. Gary¹, W. Gorn³, N.J. Hadley¹, J.M. Hauptman², B. Heck¹, H. Hilke¹, J.E. Huth¹, J. Hylen⁴, H. Iwasaki⁵, T. Kamae⁵, R.W. Kenney¹, L.T. Kerth¹, R. Koda², R.R. Kofler⁶, K.K. Kwong³, J.G. Layter³, C.S. Lindsey³, S.C. Loken¹, X-Q. Lu⁴, G.R. Lynch¹, L. Madansky⁴, R.J. Madaras¹, R. Majka¹, J. Mallet¹, P.S. Martin¹, K. Maruyama⁵, J.N. Marx¹, J.A.J. Matthews⁴, S.O. Melnikoff³, W. Moses¹, P. Nemethy¹, D.R. Nygren¹, P.J. Oddone¹, D. Park², A. Pevsner⁴, M. Pripstein¹, P.R. Robrish¹, M.T. Ronan¹, R.R. Ross¹, F.R. Rouse¹, G. Shapiro¹, M.D. Shapiro¹, B.C. Shen³, W.E. Slater², M.L. Stevenson¹, D.H. Stork², H.K. Ticho², N. Toge⁵, M. Urban¹, G.J. Van Dalen⁵, R. van Tyen¹, H. Videau¹, M. Wayne², W.A. Wenzel¹, R.F. vanDaalen Wetters², M. Yamauchi⁵, M.E. Zeller⁶, and W-M. Zhang⁴

David Nygren (LBNL) & Fred Catania (SLAC)

IEEE Transactions on Nuclear Science, Vol. NS-30, No. 1, February 1983

The first major TPC application

Installed in the PEP-4 experiment at SLAC

• Studied $\sqrt{s} = 24 \text{ GeV } e^+e^-$ collisions in PEP storage ring

 $E_{cm} = 29 \text{ GeV}.$

David Nygren (LBNL) & Fred Catania (SLAC)

IEEE Transactions on Nuclear Science, Vol. NS-30, No. 1, February 1983

Temperature & pressure stability

- ▶ Increased pressure → increased density → higher energy loss (dE/dx)
- Generally a positive pressure is maintained (> 1 atm), meaning leaks have gas moving out instead of in, though there are low-pressure TPCs
- Front-end electronics use power and generate heat
- Resistors between HV have some dark current that generates heat
- Heat radiation can be absorbed from the surrounding environment
- need cooling systems to maintain stability

At 8.5 atmospheres, the energy loss rises by about 40 % as a function of the momentum from its minimum to its plateau value. In consequence the K-T separation at 3.5 GeV/c, for example, is 14.6 % [Figure 3]. If we want a separation of 4 standard deviations, the dE/dx resolution has to be 3.5 % and the systematic errors have to be less than 1 %. The challenge is to control the gain of more than 2000 proportional wires, knowing that a 1 % change in the sector voltage causes an 18 % change in gain, a 1 % change in density causes a 9 % change in gain, and, most importantly, a 1°C change in temperature makes a 3 % change in gain.

IEEE Transactions on Nuclear Science, Vol. NS-30, No. 1, February 1983

ALICE TPC ^{[4] [5]}

- Dimensions: 5 m length, 2.5 m radius → 88 m³ of Ne/CO₂/N₂ (90-10-5) gas mixture
- High voltage: -100 kV at a central electrode (400 V/cm throughout)
- Total drift time: 92 μs
- End-cap detectors: 32 m² with 557 568 readout pads
- Gain: > 10⁴
- Diffusion: $\sigma_{\perp} = 250 \ \mu m$
- Resolution: $\sigma_x \approx 0.2 \text{ mm}$; $\sigma_p/p \approx 1\% p$; $\sigma_{dE/dx} / (dE/dx) \approx 5\%$
- Magnetic field: $\left| \vec{B} \right| = 0.5 \text{ T}$
- Temperature control: dT < 0.1 K

ALICE TPC ^{[4] [5]}

dE/dx resolution depends on the number of space points (159 radial pads)

 $Pb-Pb \sqrt{s_{NN}} = 2.76 \text{ TeV}$

run: 137171, 2010-11-09 00:12:13

Pros/cons of using a TPC for tracking [4]

- Advantages:
 - Reconstruct complete tracks with a single detector
 - Almost the whole volume is active detector region
 - Good momentum resolution (many space points)
 - Minimal radiation length (field cage + gas)
 - Proportional counter, so gives $dE/dx \rightarrow$ good particle identification
 - Excellent for track reconstruction in high-density environments (e.g. heavy-ions)
- Challenges:
 - Long drift time \rightarrow limited rate capabilities
 - ► Large volume → precision
 - Large ΔV gradient \rightarrow discharges
 - High data rates
 - Extreme load at high luminosity
 - Need to apply gating to select on specific, triggered events

Liquid scintillator TPCs

Liquid Argon (LAr) TPC proposed by Carlo Rubbia in 1977

On eBay today:

9 available

19 sold / See feedback

- In addition to ionization electrons, excited Argon will scintillate at $\lambda_{peak} = 127 \text{ nm}$
 - Quartz glass only transparent to \sim 170 nm \rightarrow require wavelength shifter
 - Tetraphenyl butadiene (TPB) is often used (peak at 430 nm)
 - ► Liquid Xenon (LXe) is also used (<u>expensive</u>!) $\rightarrow \lambda_{\text{peak}} = 178 \text{ nm}$
- Light collection improves energy resolution and can be used as a trigger
- Much higher density (order ~1000x) \rightarrow useful for detecting neutral particles
 - Neutral particle (e.g. neutron or neutrino) must scatter off of a charged particle (e.g. Argon nucleus) which then ionizes / excites the LAr

Quantity:

Scintillation light

24

- Prompt ("S1") scintillation signal
 - Light emitted from atoms excited by the original ionizing particle
- Secondary ("S2") scintillation signal

⁵⁷Co (γ source) Light emitted from atoms excited by the electron avalanche Photon Energy, eV

E.D. Lesser

Large Underground Xenon (LUX) experiment

- 370 kg LXe (!) TPC for searching for WIMP dark matter candidates
- Began running April 2013 → decommissioned 2016
 - Detector now on display at Sanford Underground Research Facility (SURF) in SD

- White material seen in the photo is PTFE (Teflon), which is used to reflect scintillation light and thus improve light yield
- Detector was submerged in 71600 gallons (271 kL) of de-ionized water; 4850 ft (1480 m) underground

ZEPLIN-III experiment

- Third generation of ZonEd Proportional scintillation in LIquid Noble gases
- 12 kg LXe TPC for searching for WIMP dark matter, based in UK
- ZEPLIN-II was the very first dual-phase TPC (both gas & liquid)
- Ran in 2008, 2010-2011

LUX-ZEPLIN (LZ) experiment

"Next generation" dark matter search using 7000 kg (!!!) LXe TPC

