Challenges of the HL-LHC

Cesar Gonzalez Renteria

02/24/21

Physics 290E

LHC / HL-LHC Plan

2

What's Left to Do?

1. Precise Higgs Boson Measurements

- Impact of New Physics on Higgs Couplings
 - $\Delta \kappa / \kappa = 5\% / \Lambda_{NP}^2$ (Λ_{NP} in TeV)
- Coupling to 2^{nd} generation fermions ($H \rightarrow \mu \mu$)
- Possibly observe HH production at 3σ
- BR(H \rightarrow invisible) < 3% (24% today)
- Study Vector Boson Scattering at high energies
- 2. Discover Potential for New Particles
 - Up to ~20-30% larger reach than current LHC

- Luminosity (Data Rate)
 - HL-LHC plans to reach 5-7.5x the nominal luminosity of previous runs
- **Pileup** (Number of collision in an event)
 - Up to $<\mu>$ = 400 collisions for a given event (compare to ~40-60 in Run 2)
 - Resolving these collisions will take much better tracking

• Tracking

- Need to completely overhaul the inner tracking system
- Inner tracker will be purely silicon

• Triggers

 The increase in luminosity and pileup combine to make triggering a very challenging part of the upgrade

- Luminosity (Data Rate)
 - HL-LHC plans to reach 5-7.5x the nominal luminosity of previous runs
- Pileup (Number of collision in an event)
 - Up to $<\mu>$ = 400 collisions for a given event (compare to ~40-60 in Run 2)
 - Resolving these collisions will take much better tracking

• Tracking

- Need to completely overhaul the inner tracking system
- Inner tracker will be purely silicon

• Triggers

 The increase in luminosity and pileup combine to make triggering a very challenging part of the upgrade

- Luminosity (Data Rate)
 - HL-LHC plans to reach 5-7.5x the nominal luminosity of previous runs
- Pileup (Number of collision in an event)
 - Up to $<\mu>=$ 400 collisions for a given event (compare to ~40-60 in Run 2)
 - Resolving these collisions will take much better tracking
- Tracking
 - Need to completely overhaul the inner tracking system
 - Inner tracker will be purely silicon

• Triggers

 The increase in luminosity and pileup combine to make triggering a very challenging part of the upgrade

ITk Design Requirements

- Radiation Hardness
 - New Sensor Technologies
 - New ASIC designs
- Granularity
 - Must resolve 200 collisions
 - High PV reconstruction efficiency
- Extended Tracking
 - Must go out to $|\eta|<4$
- Minimize Detector Material

Pileup Environment much worse in HL-LHC (200 collisions)

Designing the new Pixel ASIC (ITkPixV1)

- Read-Out ASIC for both experiments which communicates with Pixel Matrix and DAQ system
- Analog portion of chip done the standard way.
- Digital part is extremely complicated and makes up most of the design.
- ASIC bump-bonded to sensors (new 3D and planar technologies)

- Luminosity (Data Rate)
 - HL-LHC plans to reach 5-7.5x the nominal luminosity of previous runs
- **Pileup** (Number of collision in an event)
 - Up to $<\mu>$ = 400 collisions for a given event (compare to ~40-60 in Run 2)
 - Resolving these collisions will take much better tracking
- Tracking
 - Need to completely overhaul the inner tracking system
 - Inner tracker will be purely silicon
- Triggers
 - The increase in luminosity and pileup combine to make triggering a very challenging part of the upgrade

Replacing the Inner Tracker (ITk)

- All silicon tracking!!
- Pixel: 5 layers and mult. ring disks (1.1B channels)
- Strips 4 layers + 12 endcap disks (60M channels)
- Inclined pixel layers to minimize number of modules
- Much higher angular coverage

B-tagging Performance

- Luminosity (Data Rate)
 - HL-LHC plans to reach 5-7.5x the nominal luminosity of previous runs
- **Pileup** (Number of collision in an event)
 - Up to $<\mu>$ = 400 collisions for a given event (compare to ~40-60 in Run 2)
 - Resolving these collisions will take much better tracking
- Tracking
 - Need to completely overhaul the inner tracking system
 - Inner tracker will be purely silicon

Triggers

• The increase in luminosity and pileup combine to make triggering a very challenging part of the upgrade

ATLAS trigger system overview

Trigger: Issue of Losing Interesting Physics

- There exists a battle between trigger p_T threshold and rate
- Rates determined by:
 - Resolution (muons below threshold)
 - Fakes (particles not associated with the underlying event)
- Rate of two overlying objects passing trigger:
 - *Rate* = $\frac{1}{2}(p\mu)^2 f$
- Rate α (*Pileup*)²

ATLAS Simulation, 14 TeV

HL-LHC Triggering Scheme

- L0 trigger upgrades:
 - Global Trigger: Implements offline-like algorithms and pre-processing providing full-granularity energy data
 - Topological selections based on p_T and angular requirements
- Event Filter trigger upgrade
 - Regional track reconstruction limited to a Region of Interest (RoI) of the detector
 - Associated memory technique: Accelerated tracking using pre-loaded pattern banks

HL-LHC Trigger Performance

Trigger name	Physics signatures	Threshold	Threshold	Threshold
		[Run 1] (GeV)	[Run 2] (GeV)	[HL-LHC] (GeV)
Isolated single e	$WH, ZH, t\bar{t},$	25	27	22
Isolated single μ	EW SUSY	25	27	20
Di-γ	$H ightarrow \gamma\gamma, HH ightarrow bar{b}\gamma\gamma$	25,25	25,25	25,25
Di-τ	$H ightarrow auar{ au}$, EW SUSY	40,30	40,30	40,30
Four-jet w/ b-jets	$HH \rightarrow b\bar{b}b\bar{b}$, RPV SUSY	45	45	65
H_{T}	SUSY	700	700	375
MET	$ZH \rightarrow v \bar{v} b \bar{b}$, Dark Matter	150	200	200

Conclusion

- We found our four main challenges to be Luminosity, Pileup, Tracking, Triggering
 - Left out a lot of interesting upgrade technologies and efforts: NSW, HGTD, LGADs, Calo Readout Upgrades, etc.
- Solutions were innovated by creating new technologies, leveraging old, designing new schema, implementing more efficient algorithms
- Fruit of this labor means we can continue to probe interesting physics at similar readout rates and better detector efficiencies
- Still a lot of work to do to produce all the necessary detector material, test and install
- Here's to 2027

Resources

- <u>https://indico.cern.ch/event/742082/contributions/3072114/attachm</u> ents/1734070/2803878/HL-LHC-FG.pdf
- <u>https://indico.cern.ch/event/742082/contributions/3072115/attachm</u> ents/1733884/2803534/HL-LHC Status Rossi v1.pdf
- <u>https://indico.cern.ch/event/276587/attachments/502881/694424/H</u>
 <u>L-LHC-Trigger.pdf</u>
- <u>https://cds.cern.ch/record/2692161/files/ATL-DAQ-PROC-2019-020.pdf</u>