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What's Left to Do?

1. Precise Higgs Boson Measurements
* Impact of New Physics on Higgs Couplings
e Ak/Kk = 5%/Nsp (Ayp in TeV)
* Coupling to 2" generation fermions (H — uu)
* Possibly observe HH production at 30
* BR(H—invisible) < 3% (24% today)
* Study Vector Boson Scattering at high
energies

2. Discover Potential for New Particles
e Up to ~20-30% larger reach than current LHC




Key Challenges for HL-LHC

* Luminosity (Data Rate)
* HL-LHC plans to reach 5-7.5x the nominal luminosity of previous runs

* Pileup (Number of collision in an event)
* Up to < u > =400 collisions for a given event (compare to ~40-60 in Run 2)
* Resolving these collisions will take much better tracking

* Tracking
* Need to completely overhaul the inner tracking system
* Inner tracker will be purely silicon

* Triggers

* The increase in luminosity and pileup combine to make triggering a very
challenging part of the upgrade
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ITk Design Requirements

e Radiation Hardness Pileup Environment much worse
* New Sensor Technologies in HL-LHC (200 collisions)
* New ASIC designs =

* Granularity EXI.!T.ﬁNST

e Must resolve 200 collisions
* High PV reconstruction efficiency

e Extended Tracking
* Must go outto |n| < 4

* Minimize Detector Material
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Designing the new Pixel
ASIC (ITkPixV1)

e Read-Out ASIC for both experiments
which communicates with Pixel
Matrix and DAQ system

* Analog portion of chip done the
standard way.

 Digital part is extremely complicated
and makes up most of the design.

* ASIC bump-bonded to sensors (new
3D and planar technologies)
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Replacing the Inner Tracker (ITk)

* All silicon tracking!!

* Pixel: 5 layers and mult. ring
disks (1.1B channels)

e Strips 4 layers + 12 endcap disks
(60M channels)

* Inclined pixel layers to minimize
number of modules

* Much higher angular coverage
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U-jet rejection

Ratio

B-tagging Performance
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~ ATLAS trigger system overview
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Trigger: Issue of Losing Interesting Physics

* There exists a battle between
trigger pr threshold and rate

* Rates determined by:
e Resolution (muons below

threshold)

* Fakes (particles not associated
with the underlying event)

e Rate of two overlying objects

passing trigger:
* Rate = %(pu)zf
* Rate a (Pileup)?
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HL-LHC Triggering Scheme

* LO trigger upgrades:

* Global Trigger: Implements offline-like
algorithms and pre-processing providing
full-granularity energy data

* Topological selections based on py and
angular requirements

* Event Filter trigger upgrade

* Regional track reconstruction limited to a
Region of Interest (Rol) of the detector

e Associated memory technique:
Accelerated tracking using pre-loaded
pattern banks

Input collisions (14 TeV)
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LO accept
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Data request
Hardware| j€=-========
Event Tracker -
Fiter | €= for EF decision
Farm Trigger @
(HTT) 10 kHz

Baseline architecture
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Conclusion

* We found our four main challenges to be Luminosity, Pileup,
Tracking, Triggering

* Left out a lot of interesting upgrade technologies and efforts: NSW, HGTD,
LGADs, Calo Readout Upgrades, etc.

* Solutions were innovated by creating new technologies, leveraging
old, designing new schema, implementing more efficient algorithms

* Fruit of this labor means we can continue to probe interesting physics
at similar readout rates and better detector efficiencies

* Still a lot of work to do to produce all the necessary detector material,
test and install

e Here’s to 2027



Resources

e https://indico.cern.ch/event/742082/contributions/3072114/attachm
ents/1734070/2803878/HL-LHC-FG.pdf

* https://indico.cern.ch/event/742082/contributions/3072115/attachm
ents/1733884/2803534/HL-LHC Status Rossi v1.pdf

* https://indico.cern.ch/event/276587/attachments/502881/694424/H
L-LHC-Trigger.pdf

* https://cds.cern.ch/record/2692161/files/ATL-DAQ-PROC-2019-
020.pdf
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