

Hybrid Metrology

Ian Dyckes

Ian Dyckes APRIL 16, 2021 1

Introduction

What I've been doing:

- Working through the hybrid metrology procedures, described <u>here</u>.
 - Part of QC for hybrid assembly.
 - Must demonstrate we can do this for site qualification.
 - Should be performed after gluing ASICs, before wire bonding.
 - Hybrids are under vacuum on test panel.
- Establishing software infrastructure:
 - MeasureMind routines.
 - · Python scripts.

Disclaimers:

- Measured old test hybrids (X-type).
- More concerned about getting reasonable results than being in spec.
- All measurements are optical.
 - No laser measurements.

Workflow

Workflow:

- Perform measurements using SmartScope + MeasureMind software.
 - Produces unformatted raw data.
- 2. Run python script to reformat data in "common" format.
- 3. Perform analysis on "common" format data.
 - Create plots and perform required calculations.
- 4. Eventually upload data and calculations to the database.

Unformatted Raw Data

Raw Data in Common Format

#Header:			
EC or Barrel:			SB
Hybrid Type:			HX
Hybrid Ref Number:			None
Measurement Date:			2021-04-07
Measurement Time:			15:58:42
Institute:			LBNL
Operator:			Ian Dyckes
Instrument Used:			OGP Smartscope optic
Test Run M	Number:		1
Measurement Program Name:			Ian_hybrid_stretchShrink.RTN
#Position Scan:			- / -
#Location	X [mm]	Y [mm]	
Pos0	0.002	0.001	
Pos1	9.564	0.873	
Pos2	19.218	0.871	
Pos3	28.877	0.875	
Pos4	38.545	0.871	
Pos5	48.210	0.871	
Pos6	57.872	0.874	
Pos7	67.540	0.877	
Pos8	77.202	0.881	
Pos9	86.870	0.885	
Pos10	96.417	-0.001	

Plots and Calculations

Coordinate System

Coordinate System:

- Use leftmost fiducial (+) as the origin.
- Use rightmost fiducial to define x-axis.
- Define positive y-axis towards HCC.

Tests:

- Hybrid stretch/shrinkage.
- ASIC XY position.
- ASIC glue height.
- ASIC tilt.

Hybrid Stretch/Shrinkage

Procedure:

- Measure position of fiducials (+) next to each ABC.
 - Using centroid tool.
- Calculate $\Delta x = x_{\text{measured}} x_{\text{spec}}$ for each fiducial.
 - $\Delta x > 0 \rightarrow \text{stretch}$.
 - $\Delta x < 0 \rightarrow \text{shrinkage}$.
- Tolerance on each fiducial position = ± 0.1 mm.

Hybrid Stretch/Shrinkage

- Plotting $\Delta x = x_{\text{measured}} x_{\text{spec}}$ for each fiducial.
 - Resolution: few μ m.
 - All fiducials well within tolerance of 100 μm .
- Top hybrid:
 - Rightmost fiducial (farthest from origin) is 5 μm closer than spec.
- Bottom hybrid:
 - Rightmost fiducial is 17 μ m beyond spec.

ASIC XY Position

Procedure:

- Measure position of two fiducials (■) on each ASIC.
 - Using centroid tool.
- Calculate Δx and Δy compared with spec. for each fiducial.
 - Tolerance = ± 0.1 mm.

ASIC XY Position (Top Hybrid)

- Plotting XY position of measured points and spec.
 - Zoom to see spec underneath.
- Color of measured points → offset from spec.
 - Top panel: $\Delta x = x_{\text{measured}} x_{\text{spec}}$.
 - Bottom panel: $\Delta y = y_{\text{measured}} y_{\text{spec}}$.
- Plot primarily for quick tolerance check.
 - All points within the tolerance of ±0.1 mm.
- But ASICs appear systematically shifted in x.

ASIC XY Position (Top Hybrid)

- Plotting XY position of measured points and spec.
 - Zoom to see spec underneath.
- Color of measured points → offset from spec.
 - Top panel: $\Delta x = x_{\text{measured}} x_{\text{spec}}$.
 - Bottom panel: $\Delta y = y_{\text{measured}} y_{\text{spec}}$.
- Plot primarily for quick tolerance check.
 - All points within the tolerance of ± 0.1 mm.
- But ASICs appear systematically shifted in x.
 - To the left by ~ 0.075 mm.

ASIC XY Position (Bottom Hybrid)

- Plotting XY position of measured points and spec.
 - Zoom to see spec underneath.
- Color of measured points → offset from spec.
 - Top panel: $\Delta x = x_{\text{measured}} x_{\text{spec}}$.
 - Bottom panel: $\Delta y = y_{\text{measured}} y_{\text{spec}}$.
- Plot primarily for quick tolerance check.
 - All points within the tolerance of ±0.1 mm.
- HCC and ABC8 are close to limit for Δx.

ASIC XY Position (Bottom Hybrid)

Results:

- Plotting XY position of measured points and spec.
 - Zoom to see spec underneath.
- Color of measured points → offset from spec.
 - Top panel: $\Delta x = x_{\text{measured}} x_{\text{spec}}$.
 - Bottom panel: $\Delta y = y_{\text{measured}} y_{\text{spec}}$.
- Plot primarily for quick tolerance check.
 - All points within the tolerance of ± 0.1 mm.
- HCC and ABC8 are close to limit for Δx.

ABC9 ABC8 ABC7 ABC6 ABC5 ABC4 ABC3 ABC2 ABC1 ABC0 HCC09

Glue Height

Procedure:

- Measure (x, y, z) of four points on each ASIC near the corners.
- Measure (x, y, z) on four points on hybrid surrounding each ASIC.
- Fit plane to hybrid points.
- Calculate ASIC point height relative to hybrid plane.
- Subtract ASIC thickness (300 μ m) from ASIC height \rightarrow glue height.
 - Report average glue height for each ASIC.
- Spec = $\frac{120 \pm 40 \,\mu m}{}$.

- ASIC points.
- ASIC points projected on hybrid plane.

Glue Height (Top Hybrid)

- Hybrid points.
- ASIC points.

- Very different scales on axes.
- Glue heights above tolerance.
 - Though spec not finalized.
 - ABC thickness may vary by 20 μm (ABC spec).

Glue Height (Bottom Hybrid)

- Hybrid points.
- ASIC points.

Results:

- Bowing of hybrid under vacuum.
- Exaggerated by scale differences between axes.
- Glue heights within tolerance.

10

100

ASIC Tilt

Procedure:

- Using same (x, y, z) measurements from glue height calculation.
- For ABCs, calculate tilt along front-end and back-end of chip.
- For HCC, calculate tilt along x and y directions.

- Hybrid points.
- ASIC points.
- ASIC points projected on hybrid plane.

ASIC Tilt

Calculation:

• Plane fitted to hybrid points defines z' = 0 (x'y'-plane).

$$Tilt = \frac{|\Delta z'|}{\sqrt{\Delta x'^2 + \Delta y'^2}}.$$

Tolerance:

- Max possible $|\Delta z'| = 80 \mu m$ (glue height tolerance x2).
- Lowest separation of points on ASIC = 3236 μ m.
 - HCC length in y-direction.
- So require:

tilt
$$\leq 80 \ \mu m/3236 \ \mu m \approx 0.025$$

ASIC Tilt

Calculation:

• Plane fitted to hybrid points defines z' = 0 (x'y'-plane).

$$Tilt = \frac{|\Delta z'|}{\sqrt{\Delta x'^2 + \Delta y'^2}}$$

Tolerance:

- Max possible $|\Delta z'| = 80 \,\mu\text{m}$ (glue height tolerance x2).
- Lowest separation of points on ASIC = 3236 μ m.
 - · HCC length in y-direction.
- So require:

tilt
$$\leq 80 \, \mu m / 3236 \, \mu m \approx 0.025$$

Summary

Summary:

- Showed preliminary results for hybrid metrology.
- Reasonable results for measurements and calculated values.
- Software infrastructure in place.

Next Steps:

- Output calculations in JSON format → upload to database using API.
 - Test not defined in database yet.
- Document procedure for site qualification.
- Start module metrology.

Backup

Hybrid Stretch/Shrinkage

- Plotting (x, y) of each fiducial (measured and spec).
 - For top hybrid only.
- Top panel:
 - Color $\rightarrow \Delta x = x_{\text{measured}} x_{\text{spec}}$.
- Bottom panel:
 - Color $\rightarrow \Delta y = y_{\text{measured}} y_{\text{spec}}$
- Quick check to see if any fiducials out of tolerance.

Laser Issues

Laser measurements:

- Tried to use laser for ASIC and hybrid height measurements.
 - 1. Find target on hybrid using camera, then use laser to focus on target.
 - 2. Stage moves to center target under laser. Laser lowers to focus, then raises.
 - 3. Stage returns to original location. Target is centered on camera.
 - But target out of focus! And Z measurement differs by 200 μm .
- Don't care about absolute Z, only differences, so proceed with height measurements.
 - Points on left side of ASIC seem fine but...
 - Points on right side of ASIC are very low in Z, similar to hybrid points → very large tilt.
 - · Clearly something wrong.
- Suspect X calibration is off, and stage moves such that the laser is too far too the right.
 - Left ASIC points fine since still on ASIC.
 - Right ASIC points move off ASIC and onto hybrid.
 - Maybe on gold pad, maybe not.

Using Laser Focus

- Hybrid points.
 - ASIC points.

lan Dyckes APRIL 16, 2021 21