Indirect Detection of Dark Matter

Spencer Klein, LBNL & UC Berkeley

Indirect Detection from Capture and Annihilation in the Sun and Earth Signatures of Annihilation in the Milky Way & beyond v, γ and e^{\pm} pbar, dbar Conclusions

Caveats

- Indirect detection is a very broad subject, involving at least five message-carriers (γ,pbar, antideuterons e[±], ν), more than a dozen experiments, and many hundreds of papers.
- I can't cover this all; I will try to include a representative sampling of newer results.
 - Only modest reference to history
 - Possibly slightly v-centric
- Comparisons between different searches are generally rather model dependent.
 - There are model dependencies and loopholes in most of the comparisons I will present today.

Classes of signatures

- Indirect Signatures are focused on Weakly Interacting Massive Particles
- Two main types of signatures for cold particle DM
 - DM scatters elastically from a massive body (e.g. the Earth or Sun) and is gravitationally captured. It builds up, and eventually starts self-annihilating, producing observable v and other, non-observable particles.
 - ◆ DM accumulates in a galaxy/halo/... then self-annihilates.
- Many other signatures possible for light v, axions, secluded or decaying dark matter, etc.

Indirect detection - assumptions

- We measure a limit on the γ/v/antimatter flux from annihilation of dark matter in different 'reservoirs.' These limits are then interpreted in terms of a dark matter model.
- Dark matter density distribution
 - In our galaxy, and compared to others.
 - Different halo matter distributions do not give very different answer for matter abundance at the Earth, but matter a lot at the center of the galaxy.
- Dark matter velocity distribution
 - Maxwellian velocity distribution usually assumed
 - N-body simulations hint at a high-velocity tail
 - More important for direct detection than indirect

WIMPs build up in Sun & annihilate

At equilibrium: annihilation rate = capture rate

 $\frac{d\mathcal{N}}{dt} = C_{\rm C} - C_{\rm A} \mathcal{N}^2 - C_{\rm E} \mathcal{N}.$ Evaporation is negligible

- For most of considered SUSY parameter range, the Sun has reached equilibrium
- Dark matter annihilates (must be Majorana particle) or decays
- Mass and final states are unknown. Some final state choices:
 - $\chi\chi \rightarrow \nu\overline{\nu}$
 - Not expected in most SUSY models
 - "Hard" $\chi\chi$ -> W⁺W⁻ (τ ⁺ τ ⁻ for M_{χ} below threshold)
 - ♦ "Soft" χχ -> bb
 - Dark matter decay also considered.
- Consider these variables by scanning over different possibilities (mass, decays), or as systematic uncertainties

Capture in the Sun - rate uncertainties

- Capture rate depends on inelastic cross-section
- 15- 20% variation from velocity profile variations
- For heavy WIMPs, 3-body calculations find a capture rate decrease caused by the presence of Jupiter.
 - Compensated by WIMPs scattered by Jupiter into the Sun, or out of the Solar system?
- These effects also pertain to Earth WIMPs

C. Rott et al., JCAP 09, 029 (2011); Sivertsson & Edsjo, arXiv:1201.1895; Choi et al.arXiv:1312.0273

IceCube Solar analyses

- The sun is dense enough so that neutrinos with
 E > ~ 200 GeV interact before escaping
 - NC & some CC interactions produce lower energy v
 - Neutrino energy spectrum is of lesser diagnostic value
- Multiple studies of 1 year of 79-string data (w/ 2 DeepCore strings)
 - Winter: High & low energy analyses w/ Sun below horizon
 - Summer: Low energy (contained) analysis with Sun above horizon
- Cuts were optimized separately for each analysis
- Likelihoods calculated for each WIMP mass, for hard and soft channels

IceCube – PRL 110, 131302 (2013)

Results

- Background determined by time-scrambling data
- The shape of the space angle distribution (ψ) wrt. the sun was used to determine the size of the signal
- No signal seen
- Main systematic uncertainties due to optical properties of ice & sensitivity of optical modules

Blue curve is for 1 TeV $\chi\chi \rightarrow W^+W^-$ Red curve is for 50 GeV $\chi\chi \rightarrow bb$

90 % CL μ flux combined limits

- A model-independent flux limit is obtained for the 3 analyses.
 Then combined, including IC22 limits.
- Limits on the flux of μ from ν , for specific annihilation channels
 - Mass and branching mode
- These limits are compared with the range of predictions from a 7-parameter MSSM scan using DarkSUSY (shaded area)
 - Incorporates direct limits, LHC limits (as of 2012)

Cross-section limits

- Assuming equilibrium, these limits are converted to spindependent (SD, left) & spin-independent (SI) limits
 - Independent of WIMP model.
- Shaded band shows predictions based on MSSM scans
 - Comparison as of paper publication; the LHC is continually restricting parameter space.

Direct comparison with models

- An alternative approach is to directly simulate models
 - Directly include theoretical branching ratios, etc.
- Pick CMSSM (or other model) parameters and see if they are compatible with v limits.
 - Likelihood based comparison could involve individual v event energies, directions etc.
 - More accurate comparison, but heavy model dependence.
- Can include likelihoods from other experiments.....

Simulated Exclusion Projection IC86 Red – not excludable Green – 1 σ Yellow 3 σ Blue 5 σ

IceCube et al. (w/ theorists Scott et al.) JCAP 1211, 057 (2012)

Kaluza-Klein dark matter

- The IC79 analyses were also used to put limits on Kaluza-Klein dark matter
 - Probes allowed phase space for LKPs
- Same data, reinterpreted in different parameter space

ANTARES solar limit

- 0.05 km² (Effective area) Cherenkov detector in the Mediterranean
 12 strings holding 885 10" PMTs
- Search for v coming from the Sun

ANTARES collaboration EPJ Web Conf. 70, 0049 (2014)

WIMP annihilation in the Earth

- Closer than the sun, but lighter
- Varied nuclear content
 - Mostly depends on σ_{SI}
 - ♦ Resonant capture for M_{WIMP}=M_N
- Detectors like IceCube are sensitive to WIMP masses from 50 GeV on up.
 - Resonances increase sensitivity at selected masses
- AMANDA 2006 results are old, with a small detector
 - Newer results are coming

AMANDA – Astropart. Phys. 26, 129 (2006)

Earth WIMPs- ANTARES

- Look for v coming from within 5^o of the center of the Earth
 - ♦ 4 years of data

- Sensitivity shown below.
 - For 'standard' (SUSY) scenarios, less sensitive than direct searches.
- Unlike the sun, the WIMP density in the Earth is unlikely to have reached equilibrium
 - Models with enhanced annihilation cross-section lead to much higher v rates & more sensitivity

Multiple Searches for galactic WIMPs

- e+/e⁻ excesses PAMELA, Fermi, HESS
 - Can be interpreted as due to dark matter
 - Could also have other causes
 - Nearby cosmic-ray sources
 - Other processes in galactic center
- γHESS
 - No excess seen. Limits set.
- v IceCube, ANTARES
 - No excess seen. Limits set.
- Antiprotons and antideuterons
 - No pbar excess seen. No antideuterons seen
 - Modern limits needed.

Different probes for different final states

- The different final state probes (e,g,n,pbar, dbar) are most sensitive to different WIMP annihilation products
 - The optimal probe depends on the assumed WIMP annihilation final states
 - A good review, comparing sensitivities, is needed
- e[±], pbar, dbar are not directional they arrive at the Earth via diffusion

WIMP Annihilation in the Milky Way

- WIMPs in our galaxy can collide and annihilate, producing secondary particles: ν, γ, e[±], antibaryons
 - Protons are already too copious to be a useful signature
 - $\bullet v$ are fully mixed
- Sets limits on <σ_A, v>, modulated by branching ratios
 - Limits are model specific

Line-of-sight density integrals

 In any given direction, the expected DM signal depends on the square of the dark matter density along that direction

$$J(\Delta \Omega) = \int_{\Delta \Omega} d\Omega \int_{l.o.s.} \rho(l)^2 dl \quad ,$$

- Particularly sensitive to high-density regions
- For γ, may need absorption correction
 - Or additions, from bremsstrahlung/showers/...
- The signal is the integral of J over the appropriate (optimum) solid angle

$\boldsymbol{\nu}$ flux from different annihilation modes

- v energy spectrum depends on DM annihilation channels
 - SUSY (or other) model
- This also applies to photon energy spectra
- Lines are not expected in most models
 - But χχ-> νν or γγ is not ruled out.
 - Potential 'smoking gun'

PAMELA 2009

- **Cosmic-ray spectrometer** launched on a Russian earth observations satellite in 2006
- Permanent magnet spectrometer, **TOF** and calorimeter
- In 2009, announced evidence for an excess of positrons with energies ~ 10-100 GeV
- Similar results from ATIC
 - In disagreement with standard cosmic-ray expectations
 - Consistent with dark matter
 - 100s of theory papers ensued..

PAMELA – Nature 458, 607 (2009)

0.4

0.3

PAMELA, 2013

- Data in better agreement with standard cosmic-ray expectations.
- Collaboration still claims an excess, but it is much smaller, and the emphasis is now on nearby galactic sources

PAMELA collaboration, PRL 111, 081102 (Aug., 2013)

Fermi positrons

- The Earths magnetic field + satellite detector were a magnetic spectrometer to separate e⁺ and e⁻
- e⁺ fraction increases with energy, up to ~ 300 GeV.

Fermi collaboration, arXiv:1210.2558

AMS results

- Large spectrometer with calorimeter etc.
- Mounted on Intl. Space Station
- Larger than PAMELA; very high statistics measurements
- Consistent with PAMELA
 - Below Fermi measurements using Earth absorption to separate e⁺ & e⁻
 - Apparent excess... possible DM excess
- AMS sees no anisotropy
- Per AMS, consistent with diffuse background + single, power law source (i.e. a nearby source)

AMS collaboration, PRL 110, 141102 (2013)

HESS & TeV e[±]

- 5 ground based ~ TeV Cherenkov telescopes, with 'wide' field of view.
- HESS looked for electromagnetic showers in the atmosphere
 - Cannot separate e^+ , e^- and γ
- Data well fit with a broken power law.
 with break at 0.9 ± 0.1 TeV.
- Broadly consistent with an excess over theoretical expectations at energies of a few hundred GeV.
- No newer results from Cherenkov telescopes?

HESS Collaboration, A & A, 508, 561 (2009)

Fermi γ-rays

- Satellite....
 - Maximum energy depends on flux
 - ✓ ~ 30 GeV

- Looked for excess diffuse γ-ray emission in the inner galaxy, 10°-20° from the galactic center.
 - The GC itself contains γ sources
 - γ from DM annihilation & Compton scattered from e[±] produced in DM annihilation
- Look for excess above diffuse astrophysical expectations
 - No excess seen
 - Conservative limit no BG subtraction
 - Tighter limit subtract foreground, based on modelling, measurements

Fermi Collaboration, Ap J. 761, 91 (2012)

Fermi γ-ray limits

- Limits set for a wide variety of models.
 - For some models, limits are compatible with e⁺ excess. For other models, not compatible.

Fermi, theorists & the galactic center

- An excess of few-GeV γ-rays seen by Fermi has been interpreted as from light (7-50 GeV?) DM annihilation (+bremsstrahlung...)
- Many other high-energy processes in GC

Residual after subtracting diffuse galactic γ , the Fermi bubbles & an isotropic term

T. Dasylan et a. (D. Hooper) arXiv:1402.6703

HESS y limits

- Searches for photons from DM annihilation in region near (not in) galactic center
- Threshold ~ 300 GeV
- No evidence for any photon excess

Black – HESS limits from near GC Green – DARKSUSY points Dashed Lines –HESS & VERITAS limits from dwarf galaxies

IceCube galactic v searches

- At the South Pole, the galactic center is above the horizon.
 - Use starting events.
 - Much less common -> less sensitivity
- No signal seen; limits from 40string data at left.
- "Natural Scale" == consistency with thermal relics
- An alternative is to look at the parts of the galactic halo that are below the horizon.

IceCube collaboration, arXiv:1210.3557

IceCube Galactic Halo Search

- Lower density, so lower $<\sigma_{A'}$ v>
 - Much less uncertainty on halo density
- Find background from off-source region
 - Exposures, detector asymmetries cancel out

IceCube collaboration PRD 84 022004 (2011)

Galactic halo results

- 1367 events on-source
- 1389 events off-source
- Limits conservatively assume that dark matter is evenly distributed
 - Substructure will increase the annihilation rate by boosting <ρ²>
 - Substructure might 'boost' the limits by a factor of ~2
 - Not very sensitive to size of galactic halo & choice of halo model.
 - Widths of lines to right show uncertainty due to halo model.

ANTARES galactic center results

- 1321 days of data
- Backgrounds from scrambled data
 - Elsewhere in the sky
- Two tracking algorithms
 - Single line χ^2 fit for lower energies
 - Likelihood fit at higher energies
- Cuts determined separately for each model (final state, WIMP mass)
 - Angular distance between track & galactic center
 - Resolution improves from 6⁰ to <1⁰ w/ increasing mass
- Different halo models, etc. are systematic uncertainty

Juan de Dios Zornoza ft. ANTARES Collaboration, Moriond, March 24, 2014

Results...

Beyond the Milky Way

- Insensitivity to dark matter in our galaxy
- Dwarf spheroidal galaxies are expected to have a high ratio of dark:normal matter
 - Low photon luminosity, no high-energy γ background
- The Andromeda Galaxy
- Galaxy Clusters
- Quasi-point sources, so improve sensitivity with source stacking.

IceCube results

- 1 year of data with 59 strings
- Matter density profiles considered
- No signal seen

IceCube Collaboration, PRD88, 122001 (2013)

Dwarf Galaxy comparison

- HESS has similar results, as does Veritas
- The photon limits are somewhat tighter than the v limits
- These limits partially infringe on the predicted parameter space if the e⁺ excess is taken as a DM signal for χχ-> μ⁺μ⁻ & τ⁺τ⁻
 - e⁺, ν, γ fairly prolific for these channels

Antiprotons

- DM annihilation may also produce antihadrons. The most useful search target are antiprotons.
- PAMELA has measured the pbar/p ratio
- The ratio increases with energy and then levels off, ~ consistent with previous data and expectations.
 - "Places strong constraints on dark matter models..."
 - Publication and limit calculations needed
- Nothing from AMS yet

PAMELA Collaboration, NIM A623, 672 (2010)

Antideuterons

- d are produced by coalescence of two anti-baryons produced by dark matter annihilation
 - ♦ If 2 baryons are close enough together in phase space
 - Production understood from studies at RHIC & LHC
- It is argued that backgrounds from other sources should be very small
 - d were originally proposed to search for antimatter in the universe
- Propagation through the galaxy via diffusion
- Current limits set by BESS balloon experiment
 - ♦ φ < 1.9*10⁻⁴ (m²s sr GeV/nucleon)⁻¹ @ 95% C.L.

For energies from 0.17-1.15 GeV/nucleon

Limits from AMS eagerly awaited

BESS Collaboration, PRL 95, 081101 (2005); Y. Cui et al. JHEP 11, 017 (2010)

Other types of searches

- Many other indirect searches exist. Many do not fit in to the standard approaches.
- Some representative examples:
 - Axions
 - Photon lines
 - 130 GeV and 7.5 keV
 - Many theoretical explanations: sterile neutrinos, scalar dark matter, axino....

(cf. Surjeets & Georges talks)

- Secluded dark matter
- Decaying WIMPs
- WIMPzillas ultra-heavy dark matter
- Strangelets
 - Witten PRD 30, 272 (1983)
 - Issues with baryon number, etc.

Axions

- Particle postulated to solve strong CP problem
 - Why do hadronic interactions conserve CP?
- Mass unknown, couplings depend (modulo theory) on mass
 - Experimentally, if they exist, they are probably light
 - Light dark matter
- Detectable via their coupling to two photons
 - Use high-Q microwave cavity in a strong magnetic field
 - Look for a 'resonance' as the cavity frequency is scanned
- Also produced in the Sun, can be studied using a similar setup 'pointed' at the Sun

ADMX Collaboration, AIP Conf. Proc. 1274, 109 (2010)

Fermi γ -lines

- An ouside investigator found a 130 GeV γ-ray line in the data.
 - Consistent with DM annihilation
- Massive publicity

- Detailed investigation by Fermi scientists
 - Very small signal to noise ratio, but significant at a few σ
 - Seen in all data sets, including those looking at the limb of the Earth
 - Instrumental effect
 - Not dark matter
 - Monochromatic lines are not expected in most WIMP models

Fermi Collaboration PRD 88 082002 (2013)

Light dark matter

- The XMM-Newton telescope sees evidence of a very weak X-ray line
 E = (3:55 - 3:57) ± 0:03 keV
- XMM is an satellite with 3 grazing-incidence x-ray telescopes

- Lines seen Andromeda galaxy, Perseus galaxy
- Also seen by Chandra telescope

"Line" in the M31 galaxy

A. Boyarski et al., arXiv:1402.4119

The same peak in galactic clusters

 The same peak is seen in a stacked XMM spectrum comprising galactic clusters

E. Bulbul et al., arXiv:1402.2301

Theoretical explanations

- Consistent with the decay of a light (7 keV) radiative neutrino
 - ◆ J. Cline et al., arXiv:1404.3729
 - S. Baek & H. Okada, arXiv:1403.1710
- Scalar dark matter
 - ◆ K.S. Babu *et al.,* arXiv:1404.2220
- Axino
 - K. Kong et al., arXiv:1403.1536
- Etc.

WIMP decay

- Look for WIMPs decaying to a set of final states (e.g. vv, gg...)
- Same abundance assumptions as WIMP annihilation searches
- ... similar analyses
 - WIMP may cluster in Earth, Sun, galactic center, halo....
- IceCube galactic halo search set a limit on lifetimes >10²⁴ s
 - Similar caveats to WIMP annihilation search.

IceCube – Phys. Rev. D84, 022004 (2011)

Secluded Dark Matter

- Decoupled from standard model
- WIMPs annihilate to metastable mediators, which later decay to standard model particles
- Many signatures are similar to more conventional dark matter
- However, secluded dark matter mediators can also decay inside a neutrino detector
 - The challenge is to separate this from a neutrino interaction
 - Signature depends on mediator mass
- Secluded DM with a light mediator produces two not-quite parallel muon tracks.

IceCube Collaboration arXiv:1309.7007

IceCube projected sensitivity for A 1 GeV mediator & DM masses of 200 GeV & 1 TeV

WIMPzillas, SIMPzillas

-20

-21

- Ultra-heavy dark matter particles

 - tra-nea,
 10¹⁵ GeV > M >> 10⁴ Gev
 Produced in early Universe, not in a lequilibrium

 - simpzillas interact strongly
- Direct detection limits exist
- Can also be captured in Sun & annihilate
 - IceCube v flux limits provide tightest limits on WIMP/SIMPzillas with spindependent interactions

Mine/Space

Albuquerque & Perez de los Heros – PRD81, 063510 (2010)

Solar limit comparisons with the LHC

- Heavily model dependent
- Assume an effective quark-DM point interaction
- This interaction produces monojets in pp collisions
- Compare CMS monojet results with IceCube spin-dependent solar limits
 - At high WIMP masses, CMS limits lose strength, and Solar limits are the most stringent
- Many theoretical caveats...

lan covered...

IceCube + theorists

Channel sensitivity comparison

- Relative sensitivity depends on the decay model.
- General comparisons are lacking
 - A specific case: a heavy WINO, which would not be seen in direct detection or at the LHC
 - Mostly decays χχ ->W+W⁻ (also γγ, γZ)

dbar – AMS may have marginal sensitivity; GAPS

A. Hryczuk et al., arXiv:1401.6212

Shadings show range of assumptions

Future prospects: v & γ

 IceCube continues to gather data. Combining multiple years should give a factor of ~3 improvement in sensitivity.

PINGU will push thresholds down to a few GeV

ν

- ANTARES will continue to gather data, but the relative improvements will be smaller.
- KM3NeT would improve on the ANTARES limits by a factor of ~ 10.
- γ:
 HESS, Magic etc. can take more data; factor of ~ several improvements possible
 - CTA (Cherenkov Telescope Array) offers a factor of 10 more data, leading to significantly improved limits.
 Bullet cluster (Surjeet – this morning)

Future prospects: antimatter

- e⁺: May already be systematics limited, but data at higher energies would be helpful
 - AMS can push to higher energies
 - Further understanding of nearby sources would help.
- Antiprotons
 - AMS should provide high quality measurements up to high energies.
 - Can potentially provide good limits for models where hadronic final states predominate.
 - Calculations needed
- Antideuterons
 - AMS results expected any day now.

Future prospects - general

- With current detectors, expect mostly incremental progress over next few years.
 - KM3NET and CTA offer the possibility of a factor-of-10 improvement over existing detectors.
 - The AMS deuteron limit will be ~100 improvement
 - Or a signal????
- Theoretical/computational work will lead to improved limits
 - Density profile near the galactic center
 - Understanding of final states
 - For e[±],pbar, modelling of backgrounds due to nearby cosmicray sources
- Indirect detection proves a very diverse set of dark matter models; it is the only way to test some non-standard models.

Conclusions

- Dark matter was first observed in the cosmos, so it is natural to search for particle DM there.
- A very wide range of searches are possible:
 - Many probes have been studied: e^{\pm} , antiprotons, d_{γ} and v
 - Many searches are insensitive to local DM sensity
- The Sun allows for unique studies of DM with spin-dependent couplings
 - Limits probe many open areas of SUSY phase space.
- Studies of e[±] find an excess, compatible with DM or with a nearby cosmic-ray sources. Other searches have set a variety of limits.
 - Many limits are competitive with those from direct searches.
- As new instruments appear (CTA, KM3NeT), much tighter limits will be set, or a signal seen.

Backups

IceCube, PAMELA & Fermi

- PAMELA, Fermi & HESS report excess positrons, electrons & electrons respectively from the galactic center.
 - \blacklozenge If from leptophilic dark matter, annihilation should also produce $\nu.$
 - Due to e[±] energy loss, the annihilation must be nearby (1 kpc)
 - IceCube can constrain the masses of this dark matter

Back to PAMELA & Fermi

- The galactic center provides a similar constraint as the halo analysis
- N.b. IC40 ~ 2* the data of IC22

IceCube Preliminary

Sensitivity vs. energy

- Effective area increases with energy.
 - Neutrino cross-section and μ range both increase with energy
- At energies from 10-100 GeV DeepCore provides ordersof-magnitude improvement in sensitivity.

Filter level effective area for IC40 & IC79 low-energy & high-energy filters.

IceCube – 2011 ICRC – arXiv:1111.2738

Equilibrium Times vs. T_{Sun}

IceCube & DeepCore

- 1 km³ neutrino detector
- 5,160 optical modules
 - ♦ 10" PMT + Complete DAQ system₀
- 78 'standard' strings
 - ♦ 125 m string spacing
 - ♦ 17 m DOM spacing
 - ~100 GeV energy threshold
- 8 DeepCore Infill strings
 - with denser spacing
 - ♦ 50/60DOMs w/7 m spacing
 - In clearest, deepest ice
 - ~ 10 GeV energy threshold

