

Superb LHC and ATLAS performance

BERKELEY LAB

- This talk would not be possible without it.
- No time to pay due credit to those involved
 - You are all in their debt
- I will show results from pp at 7 TeV and 8 TeV
 - Some 8 TeV data analysis is incomplete

- Might produce DM particle
 - Either directly
 - Or in decay of other new particles
 - Stability of particle protected by quantum number
 - Particles produced in pairs
- All limits will be model dependent
- If a candidate is observed
 - Cannot prove it is stable
 - Can constrain couplings and mass
- If a candidate is not observed
 - Can exclude a particular model
 - Can only make <u>some</u> general statements

- DM particle (wimp) produced in proton-proton collision
 - Neutral
 - Has "weak" interactions
 - Deposits no energy in detector
 - Similar to neutrino
- Events will have
 - Missing (transverse) energy (E^{Miss}_t)
 - Other objects produced
- Events must be triggered
 - Missing transverse energy
 - Other objects, e.g jets or leptons (muon or electron)

- A very simple well defined model
 - Higgs decays to pairs of DM particles
 - DM particles only couple to matter via Higgs ("Higgs Portal")
- Measurements of Higgs properties can constrain this
 - DM contributes to "Invisible Higgs decays"
 - Invisible width limited by experiment
 - $M_{DM} < M_{H} / 2$ has bound on coupling to Higgs
 - Bound depends on spin of DM
 - Can compare to direct searches (three spins are shown
- Powerful at low values of M

"Higgs portal" model

Higgs to "invisible"

- Uses production of Z+Higgs
- Detect Z to leptons

(Can also use Z to bbar)

- Event selection
 - Cut A: 2 e or 2 $\mu,$ pt>20 GeV, mass consistent with Z
 - Cut B:EtMiss> 90 GeV
 - Cut C: $\Delta \Phi(Z, Etmiss) > 2.6$ rad
 - Cut D: |Etmiss p_{TZ} |/ p_{TZ} <0.3
 - Cut E:No jet with p_{γ} >20 GeV, η <2.4

Higgs to "invisible": Backgrounds

- ZZ, WZ from MC.:Validated from data
- WW, ttbar, Wt from MC and data:
 - These make eµ final states: signal does not
- Z+jets with jet mismeasured or lost
 - Data driven using $\Delta \Phi(Z, Etmiss)$ and $|Etmiss p_{TZ}|/p_{TZ}|$
 - Use regions outside of selections
 - Agrees within 10% with pure MC estimate
- Final background dominated by ZZ
 - Note that Higgs discovery itself validates this background.

Higgs to "invisible": selection

Invisible Higgs decay: Result

"Signal" assumes H> invisible dominates decays Sensitive to large BR

Combined with 7 TeV data: BR(H> invisible)<75%

Invisible Higgs decay: CMS

- Analysis similar: uses transverse mass of Z+etmiss as discriminant
- Similar cuts on Etmiss, jet veto etc.

Higgs and Dark Matter

- Translate limit to coupling of Higgs to DM
 - Three options: Scalar, Majorana Fermion, Vector
 - Compare to direct detection: Very powerful at low mass

Invisible Higgs: Global fit

Previous limit improves slightly if all Higgs data is used in a combined fit.

- Supersymmetry models can provide dark matter candidates
 - R parity conservation --> Lightest SUSY particle (LSP) stable
 - Must be Neutral and probably weakly interacting
- Models have strongly interacting SUSY particles
 - Heavier than LSP
 - But production rates might be larger at LHC
- Generic searches for SUSY particles cannot be easily interpreted as Dark Matter constraints
 - Direct production of LSP small (but not negligible)
- Searches within fully defined model can provide constraints
- General statements impossible

SUSY and Dark Matter

• Typically complicated decay at LHC

- Electrons, muons, jets....

Many searches in many models: nothing seen

CMSSM/MSugra

- Very constrained complete model
 - relates DM to other new particles
- Very few parameters: falsifiable
- Severely constrained now (dead?) by LHC searches
 - Example next

Jets +E^{miss}: search example

- Final states can be complex
 - Quarks, gluons (jets): momenta measured
 - Leptons (electrons, muons, tau), momenta measured
 - Neutrinos, LSP: sum or transverse momenta (energy) measured: two component vector.
- Example search
 - Missing transverse energy and at least 2 jets.
 - $E_t^{miss} > 160 \text{ GeV}, \text{pt}_{J1} > 130 \text{ GeV}, \text{pt}_{J-other} > 60 \text{ GeV}$
- Basic variable: $M_{eff} = \Sigma pt_{Jet} + E_t^{miss}$
- Look for excess at large $M_{_{eff}}$
- Separate into final states by numbers of jets
- Backgrounds dominated by top,W/Z+jets
 - Composition varies with jet multiplicity
 - Differently than for a signal

Jets +E^{miss} example: 3 jets

.....

BERKELEY LAE

Jets +E^{miss} example: 6 jets

.....

IIII

SUSY limits (nothing observed)

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Moriond 2014

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm mas}$	$\int \mathcal{L} dt [\text{fb}]$	¹] Mass limit	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \overline{q} \overline{q}, \overline{q} \rightarrow q \overline{k}_{1}^{O} \\ \overline{g} \overline{s}, \overline{g} \rightarrow q \overline{k}_{1}^{O} \\ \overline{g} \overline{s}, \overline{g} \rightarrow q \overline{q} \overline{k}_{1}^{O} \\ \overline{g} \overline{s}, \overline{g} \rightarrow q q \overline{k}_{1}^{O} \\ \overline{g} \overline{s}, \overline{g} \rightarrow q q \overline{k}_{1}^{O} \\ \overline{g} \overline{s}, \overline{g} \rightarrow q q \overline{k}_{1}^{O} \\ MSB (\overline{\ell} \ NLSP) \\ GMSB (\overline{\ell} \ NLSP) \\ GGM (bino \ NLSP) \\ GGM (bino \ NLSP) \\ GGM (higgsino \ NLSP) \\ GFavition \ LSP \end{array} $	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 \ 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2013-063 ATLAS-CONF-2013-026 ATLAS-CONF-2012-014 1211.1167 ATLAS-CONF-2012-167 ATLAS-CONF-2012-167
3 rd gen. <u>§</u> med.	$\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$ $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{0}^{0}$ $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$ $\tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{1}$	0 0 0-1 <i>e</i> , <i>µ</i> 0-1 <i>e</i> , <i>µ</i>	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	Š 1.2 TeV m(\tilde{t}_1^0)<600 GeV Š 1.1 TeV m(\tilde{t}_1^0)<350 GeV Š 1.34 TeV m(\tilde{t}_1^0)<400 GeV Š 1.3 TeV m(\tilde{t}_1^0)<400 GeV	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{light}), \tilde{r}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{medium}), \tilde{r}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{medium}), \tilde{r}_1 \rightarrow b \tilde{k}_1^1 \\ \tilde{r}_1 \tilde{r}_1 (\text{heavy}), \tilde{r}_1 \rightarrow t \tilde{k}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{heavy}), \tilde{r}_1 \rightarrow t \tilde{k}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{heavy}), \tilde{r}_1 \rightarrow t \tilde{k}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{neaved}), \tilde{r}_1 \rightarrow t \tilde{r}_1 \rightarrow t \tilde{r}_1 \end{pmatrix} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{matrix}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b nono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 1403.4853 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 1403.5222 1403.5222
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,\mathbf{k}}\tilde{\ell}_{L,\mathbf{k}},\tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\nu}(\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu} \nu), \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \mathcal{W}_{1}^{0} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \mathcal{W}_{1}^{0} \tilde{\eta}, \tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 2-3 e, μ 1 e, μ	0 0 - 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 ATLAS-CONF-2013-028 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{-}$ prod., long-lived $\tilde{\chi}_1^{\pm}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, GMSB, \tilde{\chi}_1^{0} \rightarrow \gamma \tilde{G}, \text{ long-lived } \tilde{\chi}_1^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^{0} \rightarrow qq\mu$ (RPV)	Disapp. trk 0 ,μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes	20.3 22.9 15.9 4.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e \tilde{v}_\mu, e \mu \tilde{v}_e \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e \tau \tilde{v}_\tau, e \mu \tilde{v}_\tau \\ \tilde{g} \rightarrow q q \\ \tilde{g} \rightarrow \tilde{t}_1, \tilde{t}_1 \rightarrow b s \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 7 jets - - 6-7 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-097
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> , µ (SS) 0	4 jets 2 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 350-800 GeV m(χ)<80 GeV, limit of <687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8$ TeV partial data	$\sqrt{s} = full$	8 TeV data		10 ⁻¹ 1 Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

..... **ATLAS** Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$

 $\sqrt{s} = 7, 8 \text{ TeV}$

SUSY limits (nothing observed)

SUSY Limits

- BERKELEY LAB
- Translating this limit to compare with Direct DM search needs a model
- Simplest CMSSM model with 5 parameters is almost dead
 - Once this is relaxed, huge number of parameters
- **PMSSM** is next simplest version: 19 parameters
 - Not easy to show on 2d plot
- The Baysian who knows SUSY is right can examine parameter space
 - Favoured space tends to have large DM mass.

CMSSM: Limits

.....

AB

22

pMSSM: Limits

SUSY: General statements

- Work in pMSSM
- Example here (list of refs at end)
- Some comments
 - LSP>100 GeV?
 - Hard to explain all DM with SUSY
 - Allow for something else

PMSSM allowed?

SUSY: General statements

BERKELEY LAB

- Cannot be killed
- Low LSP (<50 GeV) masses disfavoured.

Generic production

 Parameterize interactions of DM and quarks/gluons by effective operators

Name	Initial state	Type	Operator
D1	qq	scalar	$\frac{m_q}{M_\star^3} \bar{\chi} \chi \bar{q} q$
D5	qq	vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q$
D8	qq	axial-vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} \gamma^5 q$
D9	qq	tensor	$\frac{1}{M_{\star}^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
D11	gg	scalar	$\frac{1}{4M_{\star}^3}\bar{\chi}\chi\alpha_s(G^a_{\mu\nu})^2$

- Parameterized by
 - DM mass
 - Interaction strength (M*)
- Assumptions
 - Only SM and DM produced
 - No other new particles Energy of collision
 - Interaction is treated as point
 - M*> kinematics of production
- Need something else in the event to observe
 - Get this by QCD or QED radiation.
 - Only small fraction of total production observable

BERKELEY LAB

M*

m(wimp)

Associated production

Event display of "monoiet"

Run Number: 189090, Event Number: 2069

Date: 2011-09-10 17:17:48 CEST

Uses 2011 ATLAS pp data (4.7 fb-1)

- •• E^{miss} trigger (plateau above 150 GeV, 98% efficient at 120 GeV)
- Primary vertex with at least 2 associated tracks
- Biggest jet $p_{\tau} > 120$ GeV, $|\eta| < 2$ (central part of detector)
- $|\Delta \phi(\text{jet2, E}^t_{\text{miss}})| > 0.5$ in order to suppress back-to-back dijet events
- No more than two jets with pT > 30 GeV, $|\eta| < 4.5$ (full detector range)
- no electrons with $p_{T} > 20$ GeV, $|\eta| < 2.47$
- no muons with $p_{\tau} > 7$ GeV, $|\eta| < 2.5$
- Four signal regions with symmetric cuts on the leading jet p_T and Etmiss p_T , $E_t^{miss} > 120, 220, 350, 500 \text{ GeV}$

Look for event excess above known physics expectation
 Each of these has different sensitivity to wimp

Sources of background

- Must mimic final state
 - Instrumental backgrounds
 - Non collision background, cosmics etc
 - Jet events with badly mis-measured or lost jet

 Use data
 - Real physics backgrounds giving rise to same final state
 - Z(vv)+jets
 - W(μv)+jets (μ outside acceptance)
 - Top (small from MC)
 - Gauge boson pairs (WZ etc) (small from MC)
 - W/Z +jets dominates:
 - Estimate rest first then
 - Normalize from these data

W/Z backgrounds

- Basic idea
 - Use related process to measure
 - Eg Z-> ee
 - Limited by statistics
 - Muon leaves little energy in calorimeter
 - Use W(μν)
 - W and Z production dynamics similar
- Define control regions
 - "replace E^{miss} by leptons"
 - Selection contains leptons
 - Same jet selections as signal candidates
- Details in backup

Control regions

Quite well modeled Therefore corrections applied to MC are small

Signal regions

New physics examples show excess at large values

36

Jet Results: events observed

Etmiss, Pt (jet	120 GeV	220 GeV	350 GeV	500 GeV
	SR1	SR2	SR3	SR4
$Z \rightarrow \nu \bar{\nu} + jets$	63000 ± 210	5300 ± 2	$80 500 \pm 40$	58 ± 9
$W \rightarrow \tau \nu + \text{jets}$	31400 ± 100	1853 ± 8	$133 \pm 133 \pm 133$	13 ± 3
$W \rightarrow ev + jets$	14600 ± 50	$0 679 \pm 4$	40 ± 8	5 ± 2
$W \rightarrow \mu \nu + jets$	11100 ± 60	$0 704 \pm 6$	$0 55 \pm 6$	6 ± 1
$t\bar{t} + \text{single } t$	1240 ± 250	57 ± 12	4 ± 1	-
Multijets	1100 ± 900	64 ± 64	$4 \qquad 8 \pm 9$	-
Non-coll. Background	575 ± 83	25 ± 13	3 -	-
$Z/\gamma^* \rightarrow \tau \tau + \text{jets}$	421 ± 25	15 ± 2	2 ± 1	-
Di-bosons	302 ± 61	29 ± 5	5 ± 1	1 ± 1
$Z/\gamma^* \rightarrow \mu\mu + \text{jets}$	204 ± 19	8 ± 4	-	-
Total Background	124000 ± 40	$00 8800 \pm 4$	$00 748 \pm 60$	83 ± 14
Events in Data (4.7fb ⁻¹) 124703	8631	785	77

No excess

Background uncertainties

Source	SR1	SR2	SR3	SR4
$\rm JES/JER/E_T^{miss}$	1.0	2.6	4.9	5.8
MC Z/W modelling	2.9	2.9	2.9	3.0
MC statistical uncertainty	0.5	1.4	3.4	8.9
$1 - f_{\rm EW}$	1.0	1.0	0.7	0.7
Muon scale and resolution	0.03	0.02	0.08	0.61
Lepton scale factors	0.4	0.5	0.6	0.7
Multijet BG in electron CR	0.1	0.1	0.3	0.6
Di-boson, top, multijet, non-collisions	0.8	0.7	1.1	0.3
Total systematic uncertainty	3.4	4.4	6.8	11.1
Total data statistical uncertainty	0.5	1.7	4.3	11.8

Percentage uncertainties from various sources Systematics dominate: usually Jet energy scale (JES)

Comments

- Limits insensitive to mass at small values
 - Production rates controlled by event selection, (p,Jet,E,^{miss}) not mass
- Rates fall off at large masses
- Now compare to other searches
 - Recall caveat about other states and mass spectrum in full model
 - Comparison may not be valid

8 TeV data

Similar analysis

Comparisons

Excluded regions above lines

Spin independent operators

Comparisons

Excluded regions above lines

Spin dependent operators

Search with photons instead of jets

Search 2: photon+E^{miss}

all 2011 ATLAS pp data (4.6 fb-1).

- E^{miss} trigger (98% efficient at 150 GeV)
- Leading photon pT > 150 GeV, $|\eta| < 2.37$, excluding calorimeter barrel/endcap transition region 1.37 < $|\eta| < 1.52$
- Overlap removal $|\Delta \phi(\gamma, E_t^{\text{miss}})| > 0.4$, $|\Delta R(\text{jet}, \gamma)| > 0.4$, $|\Delta \phi(\text{jet}, E_t^{\text{miss}})| > 0.4$
- Not more than one jet with $p_{\tau} > 30$ GeV, $|\eta| < 4.5$
- No electrons with $\ensuremath{p_{_{T}}}\xspace > 20$ GeV, $|\ensuremath{\eta}|\xspace < 2.47$

No muons with $p_{T} > 10$ GeV, $|\eta| < 2.5$

Background estimates

- Similar to jet case
- Dominated by W/Z+photon
 - Use W/Z(to leptons) +photon as control
- Smaller background
 - And smaller potential signal

Photon+ E^{miss}_t

Photon results

20

Background source	Prediction	± (stat.)	± (syst.)
$Z(\rightarrow \nu\nu) + \gamma$	93	± 16	± 8
$Z/\gamma^*(\rightarrow \ell^+\ell^-) + \gamma$	0.4	± 0.2	± 0.1
$W(\rightarrow \ell \nu) + \gamma$	24	± 5	± 2
W/Z + jets	18	_	± 6
top	0.07	± 0.07	± 0.01
WW, WZ, ZZ, $\gamma\gamma$	0.3	± 0.1	± 0.1
γ +jets and multi-jet	1.0	_	± 0.5
Non-collision background	_	_	_
Total background	137	± 18	± 9
Events in data (4.6 fb ⁻¹)	116		

No event excess: set limits

Photon results

Excluded regions above lines

CMS: ttbar

- Probing D1 needs heavy quarks
- Look at ttbar production
 - No low jet activity
 - Large Etmiss recoiling against ttbar system
 - Use two leptonic top decays

- Basic selections
 - Two e or mu
 - Exclude if consistent with Z decay
 - At least two jets
 - There are 2 b's from top decays
- Signal selections
 - p_t(dilepton)>120 GeV
 - Etmiss> 180 GeV
 - Leptons correlated: $\Delta \Phi(I1,I2)$ <2 rad

 Note than in ttbar events, t and tbar are "back to back"

CMS: ttbar

D1: better limit than jet+etmiss

Hadronic decays of W and Z

- W and Z cannot be separated

- Etmiss >150 GeV (trigger)
- 1 Fat jet (∆r=1.4), 50<m(jet)<120

– Candidate for W or Z

- No leptons
- <2 other jets: reject top decays

Biggest background

- Z(to neutrinos)

S/B largest at high Etmiss

ATLAS:W/Z+etmiss

.....

IIII

14 TeV coming

- Data taking starts spring 2015
- Higgs to invisible
 - Limit will get better slowly
 - Might be able to get to 20% (not soon)
- SUSY
 - Mass reach will double
 - Expect major results for Moriond/summer 2016
 - Better sensitivity for production of electro weak susy particles
- Generic search for DM production
 - Rates in existing signal regions increase by factor of several
 - Expect limits on cross sections drop by 10.

- Higgs portal model constrained by Higgs measurements
 - Small mass region challenged
- No SUSY observed
 - Can only be converted into DM limit in a model
 - Specific models have been ruled out
 - CMSSM on life support (vegetative state?)
- Generic search for DM production
 - No signal
 - Limits very competitive
 - Particularly at small wimp mass
 - Beware caveat about mass gaps

- (Z(to leptons) +ETmiss)http://arxiv.org/abs/1404.0051
- (Z/W(to hadrons)+Etmiss) http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.041802 http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-073/
- (Jets + Etmiss) http://link.springer.com/article/10.1007/JHEP04%282013%29075 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-147/
- (Photon+Etmiss)http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.110.011802 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-085/
- (Higgs to dark matter) https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-010/ (Higgs to invisible) http://arxiv.org/abs/1402.3244

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

References: CMS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

٠

References: other (incomplete)

- Operator formalism: Goodman et al Phys.Rev. D82 (2010) 116010 and papers that cite this.
- Higgs portal: Brian Patt, Frank Wilczek (MIT, LNS). May 2006. 3 pp. MIT-CTP-374, e-Print: hep-ph/0605188.
- SUSY parameter space: Cahill-Rowley et al, arXiv:1308.0297, arXiv:1305.6921 etc: Jellis et al arXiv:1305.6921 etc; Arby et al Eur.Phys.J. C72 (2012) 1906

•

- (Photon+Etmiss) http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.261803
- (jet+etmiss) http://link.springer.com/article/10.1007%2FJHEP09%282012%29094
- (ttbar+ LSP) http://cds.cern.ch/record/1697173?In=en
- (higgs to invisible) http://cds.cern.ch/record/1561758?In=en

https://**(WIEteniss)**/twiki/bin/view/AtlasPublic/ExoticsPublicResults

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO https://twjggggrn.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Atlas results pages