High Pressure Gaseous Xe+TMA mixtures for improved 0νββ decay and DM searches: initial experimental studies

C. A. B. Oliveira

Lawrence Berkeley National Laboratory

0νββ decay | Majorana neutrinos

Neutrinos mix and have mass

Dirac or Majorana?

 v_μ v_e v_τ

0νββ decay searches with 136Xe

Explore different isotopes

```
<sup>28</sup>Te (CUORE), <sup>76</sup>Ge (GERDA, MAJORANA), <sup>150</sup>Nd (SNO+), <sup>82</sup>Se
(superNEMO), 136Xe (EXO - liquid, NEXT - gaseous)
```
Xenon:

- Relatively inexpensive
- Easy to enrich
- Homogeneous detectors
- Scalable technology

136Xe 0νββ decay | γ-**Backgrounds**

Underground

Shields from cosmic muon induced γs

 $Q_{BB} = 2.458 \text{ MeV}$

Main backgrounds

Detector Materials $(^{232}Th, ^{238}U$ chains) ²⁰⁸Tl (2.615 MeV) & ²¹⁴Bl (2.448 MeV) γs Radon (lab air)

Experiments need

Radiopurity screening programs

Radon monitoring

Background MC models

Background suppression is very important!

γ-**Background topological suppression**

Gaseous phase

0.05 g/cm³ @ 10 bar, room temperature 1.25 MeV e tracks about 15 cm long (70 keV/cm) > 200 keV en. deposition at the end of each track "Spaghetti with two meatballs" signature Backgrounds with only one "meatball" Topological signature (not available in liquid)

Extra handle in background suppression: topological signature recognition

2νββ decay as background

Topologically, 2νββ and 0νββ look the same

Energy resolution is a key ingredient in 0νββ decay searches!

Energy resolution in HPGXe

EL in HPGXe allows outstanding energy resolution!

Dark Matter

Evidence for DM comes from

Flat velocity distributions of spiral galaxies Gravitational lensing observations Fluctuations in the CMB

DM makes up 26.8 % of the Universe 84.5 % of the matter

WIMPs

S1 x,y,z corrected (phe)

WIMPs are DM candidates

Interact only through Weak and Gravitational Forces Their relic density matches the current DM density (0.3 GeV/cm³)

Nuclear recoils induced by WIMPS

Direct detection searches

Low energy nuclear recoils

Overlap with lots of background (mainly γs)

S $_2$ /S $_1$: distinguish between nuclear & electron recoils (may be better in HPGXe because lower F)

Neutron induced events still a problem

S₂/S₁ discrimination may be better in **HPGXe! It protects against γs but not against neutrons.**

WIMP directionality

WIMP halo \rightarrow WIMP wind

Solar system orbit (~230 km/s)

Annual rate modulation

Earth orbit (±30 km/s, few % effect) Background may be also annually modulated

Sidereal direction modulation

Angle between WIMP wind & E

Directionality signature (unique to WIMPs)

O(10) rate variation between forward and backward directions (large effect)

[S. Ahlen et al, Int. J. Mod. Phys. 25 (2010) 1]

Directionality may be the most robust signature of the WIMP nature of DM.

Experimental challenges (0νββ & DM)

Low density, extended tracks (0νββ)

Topological signature recognition

Low Fano factor

Energy Resolution (0νββ)

S₂/S₁ Electron / Nuclear recoils (DM)

Columnar recombination, molecular additives

Nuclear recoil directionality sensitivity (DM), as proposed by David Nygren The additive would also be benefit for previous points

Columnar recombination (NR - DM)

Columnar Recombination (CR) occurs when

Drift field exists (es & ions need to pass by each other)

High ionization density (stronger collective charge effects than e⁻s)

For DM directionality:

Nuclear recoil tracks should show a linear shape alpha: angle between track and electric field vector

Columnar recombination (NR - DM)

CR increases as increases

Sensing directionality:

Determine *D* in a event-by-event basis

Diffusion doesn't degrade *D* (information extracted before drift of electrons)

NR & ER in pure HPGXe

Excitations need to be converted into ionizations

Penning effect - TMA

Excitation energy -> ionization

Indirect evidence from enhanced charge avalanche gain (Xe+TMA)

TMA seems to be ideal

But other molecules might work as well: DMB, TEA, …?

Penning effect - TMA

Penning | Better energy resolution

Penning supposedly improves $\frac{1}{2}$ intrinsic energy resolution and S₂/S₁ **NR/ER discrimination.**

Charge exchange & TMA fluorescence

TMA cools down electrons

Many rotational and vibrational modes

Electrons are cooled down

CR should be enhanced (better chance of e-s recombining)

Diffusion may be suppressed (better tracking)

Electron drift velocity increases

TMA may enhance CR and improve tracking!

TMA fluoresces...

EL possible in TMA without charge avalanche?

> 1st Xe excited state: 8.3 eV IP of Xe: 12.12 eV Excited state of TMA: 4.6 eV IP of TMA: 7.9 eV

TMA EL may allow to keep improved intrinsic Energy Resolution.

Open questions (for both CM and 0νββ)

What do Xe NR tracks look like in HPGXe?

How does CR happen microscopically

Penning efficiency? Time scale?

- Does VUV Xe light break TMA chemical bonds?
- Charge exchange efficiency? Time scale?
- TMA fluorescence efficiency (after recombination)?
- WLS efficiency?
- Best geometry for light collection / transport?

Optimum fraction of TMA, pressure, drift field for CR?

Electric field range for linear EL amplification?

The "TEA-Pot"

Tom Miller Tom Weber Josh Renner Howard Matis Azriel Goldschmidt David Nygren Yasuhiro Nakajima

TEA-Pot

Parallel plate ionization/scintillation chamber

Charge and light signals measured in DC mode Flat surfaces no avalanche due to field concentration 60 keV Gamma-rays used so far

TEA-Pot - details

Minimum amount of plastics High vacuum techniques

CF

TEA-Pot - Signal Electrode

1'' diameter inner disc

50 um thick foil of Teflon as insulator

TEA-Pot

Baseline (pure Xe) - Raw data

²⁴¹Am 60 keV Gamma-rays (10 mCi) in pure Xe Set up a baseline for comparison with Xe+TMA mixtures

Energy deposited in the interaction gap is dependent on pressure.

Attenuation corrections

of X-rays interacting in the central gap:

Attenuation of 60 keV γs by the chamber materials

Fluorescent (30 keV) and Compton X-rays may escape the inner electrode region

Both effects vary with pressure

Attenuation normalization

GEANT4 Monte Carlo simulation of 60 keV Gammas interaction in the chamber

Detailed geometry in the center of the chamber

Correction considers attenuation in the Xe volume between flange & HV electrode, in the HV electrode material and in the central gap

Normalization factors

Baseline (pure Xe) - Raw data

Baseline (pure Xe) - Normalized data

Ionization onset [C. A. B. Oliveira, PLB 703 (2011) 217]

GEANT4 is able to normalize the data correctly (within 10 % error)

Change in dynamics of charge drift visible at low fields low fields EL and ionization onsets in agreement with previous measurements

Textbook quality data!

Baseline (pure Xe) - Normalized data

Anti-correlated variation in the charge and VUV light when scanning electric field (6 % in amplitude)

No pressure dependence observed

Evidence for slight recombination suppression by electric field in γ-rays

Baseline (pure Xe) - Normalized data

EL keeps linear behavior even after the ionization threshold ioniz. coef .: ~ 0.01 se /pe / cm

Observed expected linear behavior of Xe VUV EL

Good understanding of the detector. Robust baseline for comparison with Xe+TMA mixtures!

Xe+TMA data - 1 % nominal

No evidence for Penning!!

Previous evidence was indirect

Excimer formation too fast? < 70 ns at 1 bar. Decrease quadratically with p

Lower pressures? Higher TMA concentrations?

Hint for recombination enhancement

Xe+TMA data - 1 % nominal

TMA light is present

- TMA absorbing its own light?
- Evidence for electron cooling

Recombination not leading to TMA light?

Xe+TMA data - 1 % nominal

Observed TMA EL

No EL without charge avalanche for the concentration and pressure studied

Evidence for absorption of TMA by the getter

Need to understand the purifier dynamics Need for TMA concentration measurement system

Summary

Not clear if atomic / molecular processes happening in Xe+TMA allows substantial signal for NR directionality sensitivity

At the studied conditions

No evidence for Penning

No evidence for recombination TMA fluorescence

No evidence for EL without charge gain

In principle, still a large region of the parameter-space to explore

The TEA-Pot is working well and taking data!

We have a good understanding of the detector behavior (pure Xenon) We should be able to learn about important microscopic processes

Future work

Implement system for measuring TMA concentration

Seems feasible in real time with a turbo pump & RGA

Higher control in the phase-space exploration

Try to understand the dynamics of the purifier

Knowledge of TMA concentration in real time is key

Continue to explore different concentrations and pressures

Modify the chamber and implement pulse mode

Study also NR using a thin ²³⁸Pu deposited source

Alpha tagged by a solid state detector

Explore other additives

TEA, DMB, ...

Simulations of NR interactions in HPGXe

Azriel Goldschmidt adapting code from M. Foxe (LLNL, liquid Ar)

Simulations of collective charge effects in CR for NR & ER

Azriel Goldschmidt & Megan Long using Garfield++

No evidence for noticeable CR found in the explored phase-space. Other regions being explored (http://portal.nersc.gov/project/hpx/recombination/)

Experimental studies of CR with alpha particles

D. Herrera & D. González-Díaz (Zaragozza)

Evidence for directionality sensitivity at HP (up to 10 bar) Xe+TMA (few %) for alphas

Thank you! Questions?

cabdoliveira@lbl.gov carlos.oliveira.cacia@gmail.com www.carlosoliveiraresearch.com

Backup slides

Optimization of R signal collection

Impractical covering a large detector with PMTs

cost, radiopurity

Plastic bars for WLS

TMA fluoresces @ 300 nm, WLS bars shift light to ~400 nm

Optimization of R signal collection

High optical coverage seems feasible!

Back

Symmetric "ton-scale" HPGXe TPC WLS plastic in all surfaces

Except HV cathode plane

Light guides

Few PMTs shielded by copper rings Preliminary GEANT4: 15 % overall DE

[Rodolfo Orellana, simple geometry]

Baseline (pure Xe) - filtered PMT

Light >250 nm not expected to be observed!

Impurity not removed by cold getter? About 800x less light than VUV

TMA absorbed by the getter

WIMPs

WIMPs not seen with xenon. Future experiments

Lower cross section limits

Neutrino Coherent Scattering limit (without directionality sensitivity)

Even if a few events are seen, directionality might be key for a discovery

Directionality discrimination is of major importance!

Microscopic picture (DM directionality)

