Single Electrons in PIXeY

E. Bodnia on behalf of PIXeY group of Dan McKinsey

PIXeY Detector

1. The hexagonal volume has side lengths of 9.2 cm and a cathode-to-gate drift length of 5.1 cm .
2. Two arrays of seven Hamamatsu R8778 photomultiplier tubes (PMTs) with a 33% quantum efficiency
3. The PMT signal undergoes an eightfold amplification and is digitized with a 12-bit ADC (CAEN V1720) at 250 MHz

Kr-85 Events Selection: Overview

Feed the

 waveform ignoring s1 and s2 into secondSecond Pass: Spectrogram

Find the pulses (using RT algorithm)

First pass:
Identify all physical pulses
pass -area)

4

Time [$\mu \mathrm{s}$]

Kr-85 Events Selection: Cuts

Kr event rate: $\sim 20 \mathrm{~Hz}$

Extraction Field (kV/cm)	Single Electron Size (phe)	Single Electron Width $(\mu \mathrm{s})$
2.7	11.15 ± 3.18	2.34 ± 0.37
3.6	15.26 ± 3.17	2.15 ± 0.26
4.4	18.91 ± 3.14	1.91 ± 0.18
5.3	23.75 ± 3.20	1.84 ± 0.18
5.6	25.62 ± 4.20	1.82 ± 0.19
6.1	27.65 ± 4.87	1.77 ± 0.19
6.6	28.32 ± 5.44	1.73 ± 0.19
7.1	29.14 ± 5.76	1.69 ± 0.18

Table 1. The signal magnitudes and widths for single electrons observed in ${ }^{83 \mathrm{~m}} \mathrm{Kr}$ events.

Regions for the Single Electrons

1. Long timescale (~ s):
a. General background: before the S1 pulse
2. Short time scale (~ us):
a. Between S1 and S2
b. After the S2
3. Cathode spike:
a. Quantum efficiency
b. Extended Fowler-Nordheim theory

The Big Picture

TPC grids (cathode, gate)

Single Electron

Sources
Neutral impurities

Emission Mechanisms
Spontaneous release

Fowler-Nordheim (FN)
tunneling
Photoionization

The Big Picture

Fowler-Nordheim: Overview

1. Oppenheimer, Schottky,Millikan and Eyring, Fowler and Nordheim (~1920)
2. Pure tunneling effect
3. Typical operation params: $T \sim 100-400 \mathrm{~K}$

For T ~ 1000K: (Richardson-Laue-Dushman theory)

5. High surface field values resulting emission

$$
j(E)=\frac{A_{0} E^{2}}{\phi t^{2}(y)} \cdot \exp \left[\frac{-B_{0} \cdot \phi^{3 / 2} \cdot v(y)}{E}\right]
$$

6. Triangular barrier approximation gives F^{\wedge} equation as a solution

$$
R_{e}(E)=\frac{A}{e} \frac{1.54 \times 10^{-6} E^{2}}{\phi} \exp \left(\frac{-6.83 \times 10^{9} \phi^{3 / 2}}{E}\right)
$$

Fowler-Nordheim Theory: How to predict FN current

Before S1 region

$$
R_{e}(E)=\frac{A}{e} \frac{1.54 \times 10^{-6} E^{2}}{\phi} \exp \left(\frac{-6.83 \times 10^{9} \phi^{3 / 2}}{E}\right)
$$

Fowler-Nordheim Plot

$$
j(E)=\frac{A_{0} E^{2}}{\phi t^{2}(y)} \cdot \exp \left[\frac{-B_{0} \cdot \phi^{3 / 2} \cdot v(y)}{E}\right]
$$

- Beta is extracted from the slope:

$$
\begin{gathered}
t=-6.83 \cdot 10^{9} \cdot \phi_{a}^{3 / 2} \\
\beta=\frac{t}{m}
\end{gathered}
$$

$$
\beta: 420+-8
$$

\boldsymbol{t}-target slope (theoretical) \boldsymbol{m} - measure slope (from the data)

- Error bars are mainly coming from the extraction efficiency and the extraction field

Single Electron Rate: Long timescale

- FN emission
- NSE rate scales as the product of FN emission and the electron extraction efficiency

- \quad Sign of LXe impurities with field-dependent capturing cross
section/field-dependent photoionization cross section

Single Electron Rate: Between S1 and S2

- FN emission
- Neutral impurities

Single Electron Rate: Between S1 and S2

- FN emission
- Neutral impurities
- Field dependent impurity-related cross section

Single Electron Rate: Between S1 and S2

- FN emission
- Neutral impurities
- NSE rate scales linearly as the extraction efficiency (photoioniza is dominant)

Single Electron Rate: After S2

- FN emission

- Cathode spikes:

- Schottky potential decreased under E -> photoeffect due to S2 is enhanced
- Quantum efficiency is growing as a function of E field

Single Electron Rate: After S2

- Everything is similar to the region "between S1 and S2" except now more light -> more photoionization
- FN emission
- NSE rate scales linearly as the extraction efficiency (photoionization mechanism is dominant) -> SE are not trappec

Single Electron Rate: After S2

- Everything is similar to the region "before the ST" more SE released spontaneously
- FN emission

Discussion about the impurities in LXe

$$
N \propto N_{F N} \epsilon_{e x t}+\epsilon_{e x t} \cdot S \cdot\left(1-\rho \int_{0}^{\infty} \sigma_{c}\left(E_{d}\right) \cdot f(v, E) d v\right) \text { or } \quad N \propto N_{F N} \epsilon_{e x t}+\epsilon_{e x t} \cdot S \cdot \rho_{p} \cdot \sigma_{p}\left(E_{d}\right) \cdot G
$$

Cathode Spike

FN-theory + photoeffect

Cathode Spike: Quantum Efficiency

$$
\begin{aligned}
& Q E=\frac{N_{e}}{N_{p h}} \sim c-A \cdot \exp \frac{-E_{\text {wire }}}{E_{c}} \\
& E_{\text {wire }}=E_{\text {ext }} \cdot \frac{p}{d}, \\
& \mathrm{~A}=0.00096 \text { is the maximum } \\
& \mathrm{QE} \\
& \mathrm{Ec}=\text { characteristic field } \sim 80 \\
& \mathrm{kV} / \mathrm{cm} \\
& T \\
& h e \\
& \text { field lines going up }
\end{aligned}
$$

$\mathrm{Ne}=$ se-area $/ \mathrm{eee}^{*} \mathrm{~g} 2$
Nph $=P^{*}($ S2 area $) / g 1$, where $\mathrm{g} 1 \sim 10 \%$

Further Work for LZ

1) FNP (Fowler-Nordheim Photoionization theory) : temperature, predicting "right" coating function, time-dependent behavior
2) Predict LZ rate in LXe and GXe regions based on FN and FNP theories

Backup

First pass

Step 1: How RT algorithm works

For each summed pod, track two rolling sums (call them A and B)

- When rolling sum A crosses above threshold (th1), declare in pulse

- Within rolling window A, do fine start search
- While in pulse, and rolling sum B crosses below threshold, declare out of pulse
- Create another threshold (th2) in order to get correct boundaries for the pulse and be above the noise level

First pass

Step 2: Use the cuts to classify s1 and s2

- Print out id's events for the noted areas
- Visual inspect their waveforms
- Add classifying function to the rolling thunderer algorithm, so it can plot s1 and s2, and potential SE pulses

Green- s2
Yellow-s1
Blue - SE

Example of the First Pass output:

$\boldsymbol{N} \leftarrow \rightarrow$ a

Second paSS: step 1: Using spectrogram to find small signals

- Spectrogram is a numpy function which "converts" the original signal into frequency space (time domain to frequency domain for each window)
- Physical signals, such as s1, s2, and SE are tend to be at lower frequency range (below threshold)
- Noise won't be too visible in the threshold frequency space, since white noise contains all of the frequencies which are equally distributed
- An additional condition for SE pulses: pulse area > 18

The SE signals are the ones which below the threshold and are not s1 and s2

Summary on events selection

So far, the described algorithm for SE detection is able:

- Find all of the pulses on the waveform. Precision can be tuned by threshold and window parameters
- Classify s1, s2 signals
- Reject false detections
- Find small pulses and classify single electron pulses
- It works well on different data sets (16 data sets were tested so far)

More about FN Barrier

$$
V_{\text {image }}=\mu-F \cdot x-\frac{Q}{x}+\Phi
$$

\checkmark near the metal surface (force F due to charge q on the image)

FN Error Bars

1. \quad NSE $=$ Single electron area/(g2*extraction efficiency) (per event)
a. We sum all the single electrons per event and take average
2. Main error sources: single electron area, extraction efficiency (EE).
3. Propagation error :

$f=A B$	$\sigma_{f}^{2} \approx f^{2}\left[\left(\frac{\sigma_{A}}{A}\right)^{2}+\left(\frac{\sigma_{B}}{B}\right)^{2}+2 \frac{\sigma_{A B}}{A B}\right][9[10]$	$\sigma_{f} \approx\|f\| \sqrt{\left(\frac{\sigma_{A}}{A}\right)^{2}+\left(\frac{\sigma_{B}}{B}\right)^{2}+2 \frac{\sigma_{A B}}{A B}}$
$f=\frac{A}{B}$	$\sigma_{f}^{2} \approx f^{2}\left[\left(\frac{\sigma_{A}}{A}\right)^{2}+\left(\frac{\sigma_{B}}{B}\right)^{2}-2 \frac{\sigma_{A B}}{A B}\right][11]$	$\sigma_{f} \approx\|f\| \sqrt{\left(\frac{\sigma_{A}}{A}\right)^{2}+\left(\frac{\sigma_{B}}{B}\right)^{2}-2 \frac{\sigma_{A B}}{A B}}$

4. Assume that the errors from the EE and SE area are not correlated, then
5. Remember that we are drawing FN plot

- $Y=j / E _w i r e[i]^{\wedge} 2$
- $\quad X=1 / E _$wire[i] , where E_wire = E_ext * (wire pitch/ wire diameter)

$$
\sigma_{f} \approx|f| \sqrt{\left(\frac{\sigma_{A}}{A}\right)^{2}+\left(\frac{\sigma_{B}}{B}\right)^{2}}
$$

- Remember we will need $\log (Y)$ for FN plot and the errors for log :
$f=a \ln (b A)$

$$
\sigma_{f}^{2} \approx\left(a \frac{\sigma_{A}}{A}\right)^{2}
$$

$$
\sigma_{f} \approx\left|a \frac{\sigma_{A}}{A}\right|
$$

$\sigma_{l n}=\left\lfloor\frac{\sigma_{A}}{A}\right\rfloor, \sigma_{A}=$ error $=\sqrt{\left(\frac{\delta N S E}{N S E}\right)^{2}+\left(\frac{\delta E E}{E E}\right)^{2}} \quad$ Since $|\mathrm{f}|=|\mathrm{A}|$ cancels out

Anatomy of Current Density: The Supply Function

1. Consider a collection of electrons with the probability of an energy state governed by Fermi-Dirac statistics

$$
\rho=\langle\psi(t) \mid \psi(t)\rangle=\langle\psi(0) \mid \psi(0)\rangle=\sum_{j}\left|C_{j}\left(E_{j}\right) \psi_{j}(x)\right|^{2}
$$

3. The goal is to find the density variation near the surface of metal:

$$
J_{q}=\frac{q}{2 \pi} \int\left(\frac{\hbar k_{x}}{m}\right) d k_{x}\left\{\frac{1}{(2 \pi)^{2}} \int f_{F D}\left(E_{k}\right) d k_{y} d k_{z}\right\}
$$

4. Let T $->0$ and explore FD function in this limit, then $\}$ becomes:
$\frac{1}{2 \pi} \int_{0}^{\sqrt{k_{P}^{2}-k_{2}^{2}}} k_{\perp} d k_{\perp}=\frac{1}{4 \pi}\left(k_{F}^{2}-k_{x}^{2}\right)$

$$
\rho_{F D}(T \rightarrow 0)=\frac{2}{3} N_{c} \mu_{o}^{3 / 2}=\frac{k_{F}^{3}}{3 \pi^{2}}
$$

The transverse velocities are integrated over in FD distribution: supply function

This fundamentally refers to the concept of chemical potential

Anatomy of Current Density: The Supply Function

1. Max Fermi momentum occurs at $\mathrm{j}=\mathrm{N}+1: \quad C_{j}^{2}=\frac{(N+1)^{2}-j^{2}}{(N+1)^{2}}$
(This is typically solved numerically)
2. Taking 1. into account, the density looks like this:

$$
\rho(x) \propto \sum_{j=1}^{N} C_{j}^{2}\left\{\begin{array}{cc}
\left|\left(e^{i k_{j} x}+r\left(k_{-j}\right) e^{i k_{-j} x}\right)\right|^{2} & (x<0) \\
\left|t\left(k_{j}\right) e^{i k_{j} x}\right|^{2} & (x \geqslant 0)
\end{array} \begin{array}{l}
\text {-> for lower momentum than Fermi } \mathrm{k}, \text { the } \\
\text { density is not zero! tunneling occurs }
\end{array}\right.
$$

The electron emission is purely quantum mechanical phenomenon!

Anatomy of Current Density: Simple Harmonic Oscillator

1. Another solution for SHO : the temperature-dependent Wigner domain $\mathrm{f}(\mathrm{x}, \mathrm{t}, \mathrm{k})$

$$
V(x)=K x^{2} / 2
$$

2. Number and current densities then:

$$
\rho(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x, k, t) d k
$$

$$
J(x, t)=\frac{q}{2 \pi} \int_{-\infty}^{\infty} \frac{\hbar k}{m} f(x, k, t) d k
$$

$f(x, k, t) d x d k=f\left(x^{\prime}, k^{\prime}, t^{\prime}\right) d x^{\prime} d k^{\prime} \begin{aligned} & \text { \# of particles is } \\ & \text { conserved }\end{aligned}$
Contains all QM info
3. How the whole system behaves in time? $\quad x^{\prime}=x+\hbar k d t / m \quad k^{\prime}=k+F d t / \hbar$
4. The volume is changing of the phase space; treat probability as liquid:

$$
d x^{\prime} d k^{\prime}=\left|\begin{array}{ll}
\partial_{x} x^{\prime} & \partial_{x} k^{\prime} \\
\partial_{k} x^{\prime} & \partial_{k} k^{\prime}
\end{array}\right| d x d k=\left|\begin{array}{cc}
1 & 0 \\
\hbar d t & 1
\end{array}\right| d x d k=d x d k
$$

Anatomy of Current Density: Simple Harmonic Oscillator

5. Consider F to be the linearl field, and for a single particle:

$$
\partial_{t} f(x, k, t)=-\frac{\hbar k}{m} \partial_{x} f(x, k, t)+\frac{F}{\hbar} \partial_{k} f(x, k, t) \quad \text { solution: } \quad f(x, k, t+d t)=f\left(x-\frac{\hbar k}{m} d t, k-\frac{F}{\hbar} d t, t\right)
$$

Longer times: $\quad f(x, k, t)=f\left(x-\frac{\hbar k}{m} t+\frac{F}{2 m} t^{2}, k-\frac{F}{\hbar} t, 0\right)$
6. If electric field F is constant in time:

$$
f(x, k, t)=f\left(x-\frac{\hbar k}{m} t+\frac{F}{2 m} t^{2}, k-\frac{F}{\hbar} t, 0\right)
$$

We want for $\mathrm{df} / \mathrm{dt}$ the particles to be following the contour lines of a surface plot of the distribution function $f(x, k)$ -> Wigner's function is constant along each trajectory with constant energy.
7. How the density should be expressed in terms of Wigner function then? what about time evolution?

$$
\frac{\partial}{\partial t} f(x, k, t)=-\frac{\hbar k}{m} \frac{\partial}{\partial x} f(x, k, t)+\int_{-\infty}^{\infty} \underbrace{V\left(x, k-k^{\prime}\right) f}_{\text {Non-local nature }} f\left(x, k^{\prime}, t\right) d k^{\prime}
$$

Extraction Field (kV/cm)	Single Electron Size (phe)	Single Electron Width $(\mu \mathrm{s})$
2.7	11.15 ± 3.18	2.34 ± 0.37
3.6	15.26 ± 3.17	2.15 ± 0.26
4.4	18.91 ± 3.14	1.91 ± 0.18
5.3	23.75 ± 3.20	1.84 ± 0.18
5.6	25.62 ± 4.20	1.82 ± 0.19
6.1	27.65 ± 4.87	1.77 ± 0.19
6.6	28.32 ± 5.44	1.73 ± 0.19
7.1	29.14 ± 5.76	1.69 ± 0.18

Table 1. The signal magnitudes and widths for single electrons observed in ${ }^{83 \mathrm{~m}} \mathrm{Kr}$ events.

Anatomy of Current Density: Simple Harmonic Oscillator

8. Why Wigner function is important? It gives the insights on nature of tunneling including the tunneling resonance! Wigner potential can be treat as the SHO:

$$
\begin{gathered}
V(x+y)-V(x-y)=\sum_{n=0}^{\infty} \frac{2 y^{2 n+1}}{(2 n+1)!}\left(\frac{\partial}{\partial x}\right)^{2 n} V(x) \quad \int_{-\infty}^{\infty} y^{n} e^{2 i k y} d y=\pi\left(-\frac{i}{2} \frac{\partial}{\partial k}\right)^{n} \delta(k) \\
\frac{\partial}{\partial t} f(x, k, t)=-\frac{\hbar k}{m} \partial_{x} f+\frac{1}{\hbar}\left(\partial_{x} V\right) \partial_{k} f \quad+\frac{1}{\hbar} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{2 n}(2 n+1)!}\left(\partial_{x}^{2 n+1} V\right)\left(\partial_{k}^{2 n+1} f\right)
\end{gathered}
$$

The equation is solved as if V is from SHO except for real SHO all the higher orders of the derivatives vanish 9. For the TIME-DEPENDENT SHO:

$$
\hat{O} \equiv-\frac{\hbar k}{m} \frac{\partial}{\partial x}+\frac{1}{\hbar}\left(\partial_{x} V\right) \frac{\partial}{\partial k}
$$

And the function in real SHO dependents only on the combination of kinetic terms
10. Consequences: the particles trajectories are the circles on Wigner domain and the solutions are similar to real SHO! (this will be very important once we start talking about resonant tunneling which will (hopefully) explain time-dependent nature of SLAC data

Anatomy of Current Density

Genesis for all possible emissions:
The electrons with energies are closer to Fermi level have higher probability to tunnel through the barrier in the metal

- Velocity of the electrons
- Distribution function of emitted electrons
- The lower limit of the integral is 0 because the emission theory was studied mainly into vacuum and no electrons are incident from the vacuum.. Which is not true for us and concerns me now (has to be -inf for our case)
- Argument of $J(F, T)$ implies that the transmission probability is field dependent (F) and the supply function is temperature dependent

Momentum domain:

$$
J(F, T)=\frac{q}{2 \pi} \int_{0}^{\infty} \frac{\hbar k}{m} D(k) f(k) d k
$$

Energy domain:

Transmission

$$
\begin{aligned}
& J(F, T)=\frac{q}{2 \pi \hbar} \int_{0}^{\infty} \text { probability } \\
& D(E) f(E) d E \\
& \hbar^{-1} d E=(\hbar k / m) d k
\end{aligned}
$$

Extra work for me when working on FN emission for LZ

Area of the emitter A

Boulton claims the widest point of the detector is 18.4 cm
https://arxiv.org/pdf/1705.08958.pdf

Theta $=60$, so $A B O$ is equilateral $->A B=a=9.2 \mathrm{~cm}$
Formula for the area of a hexagon with the side a:
$A=\frac{3 \sqrt{3}}{2} a^{2}$

Plugging in $\mathrm{a}=9.2 \mathrm{~cm}->220 \mathrm{~cm}^{\wedge} 2=0.022 \mathrm{~m}^{\wedge} 2$
So, total area of a hexagon $0.022 \mathrm{~m}^{\wedge} 2$. However, taking into account 250 wires with a wire pitch (3 mm), diameter (80 um), total area covered by the wires: 250* $80(\mathrm{um})^{*} 13.8(\mathrm{~cm})=0.00276 \mathrm{~m}^{\wedge} 2=$ $2.76 * 10^{\wedge}(-3) \mathrm{m}^{\wedge} 2$

Quantum Efficiency: Cathode

The cathode spike region:

$$
Q E=\frac{N_{e}}{N_{p h}}
$$

- N_{e} - number of electrons coming from the grids

$$
N_{e}=\frac{S E \text {-area }}{g 2 \cdot \epsilon}
$$

$S E$ - area is the single electrons area in phe, and ϵ is the electron extraction efficiency

- $N_{p h}$ - number of photons hitting the grids

$$
N_{p h}=\frac{S 2-\text { area }}{g 1}
$$

