Single Electrons in PIXeY

E. Bodnia on behalf of PIXeY group of Dan McKinsey



PiIXeY Detector

1. The hexagonal volume has side lengths of 9.2 cm and a cathode-to-gate drift length of 5.1 cm.

2. Two arrays of seven Hamamatsu R8778 photomultiplier tubes (PMTs) with a 33% quantum efficiency

3. The PMT signal undergoes an eightfold amplification and is digitized with a 12-bit ADC (CAEN V1720) at 250
MHz

Top PMT array ———————>

Gas Region —————>

Bottom PMT array
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Kr-85 Events Selection: Cuts
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Kr event rate: ~ 20 Hz



Extraction Field (kV/cm)

Single Electron Size (phe)

Single Electron Width (us)

2.7 11.15 +3.18 2.34 +0.37
3.6 15.26 + 3.17 2.15+0.26
4.4 1891 +3.14 1.91 +0.18
5.3 23.75 + 3.20 1.84 +0.18
5.6 25.62 +4.20 1.82 +0.19
6.1 27.65 +4.87 1.77 £ 0.19
6.6 28.32 +5.44 1.73 +£0.19
7.1 29.14 + 5.76 1.69 +0.18

Table 1. The signal magnitudes and widths for single electrons observed in >*™Kr events.




Regions for the Single Electrons
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The Big Picture

TPC grids (cathode, gate)
Single Electron
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The Big Picture
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Fowler-Nordheim: Overview
9 r ]
Oppenheimer, Schottky,Millikan and -
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Fowler-Nordheim Theory: How to predict FN current
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Fowler-Nordheim Plot

e Betais extracted from the slope:
t =—6.83-10° . ¢3/2
t
B=—
m
B:420 +-8

t -target slope (theoretical)
m - measure slope (from the data)
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from the extraction efficiency
and the extraction field
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Single Electron Rate: Long timescale -|
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Single Electron Rate: Between Sl and S2
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Single Electron Rate: Between S1and S2  ~ Il

e FN emission £ ] "
e Neutral impurities

e Field dependent impurity-related cross section TR
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Single Electron Rate: Between Sl and S2

FN emission
Neutral impurities

NSE rate scales linearly as the extraction efficiency (photoioniza
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Single Electron Rate: After S2

- FN emission
- Cathode spikes:
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Single Electron Rate: After S2

now more light -> more photoionization

e FN emission
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Single Electron Rate: After S2

- Everything is similar to the region “before the S1”

more SE released spontaneously

- FN emission

0.0010

0.0008

0.0006

S2 Normalized NSE Rate

0.0004

0.0002

t
Eext = 6.89 [kV/cm]
025 050 075 1.00 125 150 175  2.00

Eq [kV/cm]

0.00045

0.00040

0.00030

0.00020

S2 Normalized NSE Rate

0.00010

0.00005 1

0.00000

s2

Amplitude

20 S1

N IL‘

Cathode

(o] 20 40 60 80 100
Time [us]

120

0.00035 1

0.00025 1

0.00015 1

Eq = 0.46 [kV/cm]

5
Eext [kV/cm]

18



Discussion about the impurities in LXe
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Cathode Spike: Quantum Efficiency
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Further Work for LZ

1)

2)

FNP (Fowler-Nordheim Photoionization theory) : temperature,
predicting “right” coating function, time-dependent behavior

Predict LZ rate in LXe and GXe regions based on FN and FNP
theories

metal | vacuum

> >
AE) N(e) 0 X
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Backup
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First pass

Step 1: How RT algorithm works

For each summed pod, track two rolling sums
(call them A and B)

e \When rolling sum A crosses above
threshold (th1), declare in pulse

e Within rolling window A, do fine start search

e While in pulse, and rolling sum B crosses
below threshold, declare out of pulse

e Create another threshold (th2) in order to
get correct boundaries for the pulse and be
above the noise level

In pulse:

—————ee O &Y "lf
B=~0 A > start threshold

Out of pulse:

B < end threshold

- ———————

A=~0

24



First pass

Step 2: Use the cuts to classify s1 and s2

area vs. rise_10 90
40 —

- Print out id’s events for the noted
areas

- Visual inspect their waveforms

- Add classifying function to the
rolling thunderer algorithm, so it
can plot s1 and s2, and potential
SE pulses

15

10

Green- s2
- s1
-SE

05

00 _
Z 3

area 25



Example of the First Pass output:

S1 (158.12 phe)
50 - S2 (14605.64 phe)
SE (16.38 phe)
SE (44.79 phe)
40 - SE (15.96 phe)
SE (15.30 phe)
[}
S 301
:5_
€
<
20 A
10 A
0 L—-H‘—_—
20 40 60 80 100 120
Time [us]

A€>PQ=R
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SeCOnd PASS: Step 1: Using spectrogram to find small signals

125 ~
100 A
(V]
=2 T59
- Spectrogram is a numpy function S 50
which “converts” the original signal < o
into frequency space (time domain | 1| | |
to frequency domain for each 01 - : : Emas = :
WindOW) 5 0 20 40 §0 80 100 120
' 5
- Physical signals, such as s1, s2, and 0:8 0
SE are tend to be at lower frequency 0.6 =5
range (below threshold) 6 -10

=15

=20
-25

- Noise won't be too visible in the  threshold %2
frequency space, since white noise 0.0
contains all of the frequencies which
are equally distributed

- An additional condition for SE
pulses: pulse area > 18

2000 4000 6000 8000 10000 12000 14000 16000

The SE signals are the ones which below the threshold and are
not s1 and s2



Summary on events selection

So far, the described algorithm for SE detection is able:

- Find all of the pulses on the waveform. Precision can be
tuned by threshold and window parameters

- Classify s1, s2 signals
- Reject false detections
- Find small pulses and classify single electron pulses

- It works well on different data sets (16 data sets were
tested so far)
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More about FN Barrier

C
"/imuqc = i — F.-x— _2 + P
: .
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/

V near the metal surface
(force F due to charge q on the
image)

Coulomb potential from the
image charge inside the metal
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FN Error Bars

NSE = Single electron area/(g2*extraction efficiency) (per event)
a. We sum all the single electrons per event and take average

2. Main error sources: single electron area, extraction efficiency (EE).
3. Propagation error :
_ 2 g2 [(04)? , (9B TAB | [9]10] ~ 94\? , (9B\? , ,94B
=l 7 f{(A)+(B) +2AB] or ~ |l (A)+(B) 2AB
A 2 22 [(T4)" 4 (9B _ 9%4B | ”A B 0AB
=5 “f”fRA)“L(B) 2AB] or ~If ) + (%) 242
4. Assume that the errors from the EE and SE area are not correlated, then
5. Remember that we are drawing FN plot ol S
- Y =j/E_wire[i]*2 e \/(7) =
- X =1/E_wire][i] , where E_wire = E_ext * (wire pitch/ wire diameter)
- Remember we will need log(Y) for FN plot and the errors for log :
o4 \?2 oA
_ 2 o~ (a—2) 112 or ~ la—=
f=aln(bA) o (a, 1 ) f 1

NSE

Oiny = LUTAJ, o = €rror — \/(M)2_|_ (5E_E)2

EFE

Since [f| =

|A| cancels out



Anatomy of Current Density: The Supply Function

1. Consider a collection of electrons with the probability of an energy state governed by Fermi-Dirac statistics

() = e /7|y (0)) = Z eFMC )

1D UIG pruvaviiily vl uic otatc VI w vc uCCUpled

G| E; p= (WOl ®) = (WOw©) = Y IGEW;)|?
J

3. The goalis to find the density variation near the surface of metal:

_ 4 hk The transverse velocities
Jg = Do dk, \ /fFD(Ek)dk dk, are integrated over in FD
T m (271:) BT
distribution: supply

4. LetT->0 and explore FD function in this limit, then {} becomes: function

1 k22 1 5 PE) This fundamentally
e g — = (12 _ 12 T = 0)= 2N /2 = _E | referstothe concept of
27 J, kidk, A (kF kX) oro ) 3 e 372 | chemical potential




Anatomy of Current Density: The Supply Function

: . 2 (N+1)%—j2 L
1. Max Fermi momentum occurs at j = N+1: C=——7"" (This is typically solved
(N+1) numerically)
2. Taking 1. into account, the density looks like this:
( 2
N |(elkfx + r(k_j)elk—f") (x <0)
px) x ) C? ,
j=1 |t(kj)e”‘jx (x=0) -> for_ onver momentum thgn Fermi k , the
L density is not zero! tunneling occurs

The electron emission is purely quantum mechanical phenomenon!
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Anatomy of Current Density: Simple Harmonic Oscillator

1. Another solution for SHO : the temperature-dependent Wigner domain f(x, t, k)

Vi) = K> )2
1 (6]
2. Number and current densities then: P(X, t) — ﬂ / f(xa k, t) dk

I, £) = %/ %kf(x,k,t)dk

F(x, k, Ddxdk = fOC, K, )dx di T orparmoss s Contains all QM info

3. How the whole system behaves intime?  x' = x + hkdt/m kK =k + th/h

4. The volume is changing of the phase space; treat probability as liquid:

ao.x ok

dx'dk =
* 9xX 9K

dxdk = ! (1)

bt dx dk = dx dk

33



Anatomy of Current Density: Simple Harmonic Oscillator

5. Consider F to be the linearl field , and for a single particle:

3f (6, k, 1) = —%axf(x, k1) + %akf(x, k1) somion fOokt+df)=f (x _ %dt, k-t t)
N _ _hk  F o,  F
Longer times:  f(x,k,t) =f (x - t+ 2mt Kk ht, O>
6. If electric field F is constant in time:
hk F F
k) = — P —k
fkt)y=f (X el > )

We want for df/dt the particles to be following the contour lines of a surface plot of the distribution function f(x, k)
-> Wigner’s function is constant along each trajectory with constant energy.

7. How the density should be expressed in terms of Wigner function then?what about time evolution?

9 __hko > — , ,
atf(x,k,t)— maxf(x,k,t)+/_ V (x,k—K)f (x,k',t) dk

(0]

Non-local nature 34



Extraction Field (kV/cm)

Single Electron Size (phe)

Single Electron Width (us)

2.7 11.15 +3.18 2.34 +0.37
3.6 15.26 + 3.17 2.15+0.26
4.4 1891 +3.14 1.91 +0.18
5.3 23.75 + 3.20 1.84 +0.18
5.6 25.62 +4.20 1.82 +0.19
6.1 27.65 +4.87 1.77 £ 0.19
6.6 28.32 +5.44 1.73 +£0.19
7.1 29.14 + 5.76 1.69 +0.18

Table 1. The signal magnitudes and widths for single electrons observed in >*™Kr events.




Anatomy of Current Density: Simple Harmonic Oscillator

8. Why Wigner function is important? It gives the insights on nature of tunneling including the tunneling
resonance! Wigner potential can be treat as the SHO:

00 2 2n+1 2n S ) i a n
V(x+y)—V(x—y)=§(2;me(£) V(0 /_ooy”ez’kydy=rc(—§—) 5(k)

(0]

1 1 (—=1)"
0 —(a0.V)o ind 2n+1 2n+1
S5OV 4 LT s (@) (@)

n=1

nk
m

a —_——
a—tf(x, k, t) =

The equation is solved as if V is from SHO except for real SHO all the higher orders of the derivatives vanish
9. For the TIME-DEPENDENT SHO:

pe_tko 10

X7 ok

And the function in real SHO dependents only on the combination of kinetic terms
10. Consequences: the particles trajectories are the circles on Wigner domain and the solutions are similar
to real SHO! (this will be very important once we start talking about resonant tunneling which will (hopefully)
explain time-dependent nature of SLAC data
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Anatomy of Current Density

The electrons with energies are closer to Fermi level
have higher probability to tunnel through the barrier

in the metal T (F, T) — i h—kD(k)f(k) dk

Genesis for all possible emissions:

Momentum domain:

e \Velocity of the electrons 27 0 m
e Distribution function of emitted electrons .
Energy domain: Transmission
e The lower limit of the integral is 0 because the q co _probability
emission theory was studied mainly into JF,T)= — D(E)f(E)dE
vacuum and no electrons are incident from the 27h 0
vacuum.. Which is not true for us and concerns
me now (has to be -inf for our case) h=YdE = (hk/m)dk
e Argument of J(F, T) implies that the \ Extra work for me when working on FN
transmission probability is field dependent (F) emission for LZ

and the supply function is temperature
dependent
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Area of the emitter A

Boulton claims the widest point of the
detector is 18.4 cm
https://arxiv.org/pdf/1705.08958.pdf

Theta = 60, so ABO is equilateral -> AB =a =9.2 cm

Formula for the area of a hexagon with the side a:

3
A =

3 v
a
2
Plugging ina =9.2 cm -> 220 cm”2 = 0.022 m”"2

So, total area of a hexagon 0.022 m”2. However, taking into account 250 wires with a wire pitch (3 mm),
diameter (80 um), total area covered by the wires: 250* 80 (um)*13.8 (cm) = 0.00276 m*2 =
2.76*107(-3) m”2
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Quantum Efficiency: Cathode

The cathode spike region:

- N - number of electrons coming from the grids

__ SE—area
lei= g2-€

SE — area is the single electrons area in phe, and e is the electron extraction
efficiency

* Npp - number of photons hitting the grids

__ S2—area
Nph = g1



