

The Art of Experiment – Symposium honoring David Nygren, Lawrence Berkeley National Laboratory, 2-3 May 2014

Developments in Hard X-ray Optics – towards nm resolution

Björn Cederström

Physics department, KTH Royal Institute of Technology, Stockholm, Sweden

- Dave's connection to hard x-ray optics
- Why x-ray micro/nano beams
- The path to nm resolution
- Innovation and technological development
- Lensless imaging
- Extreme heat-resistant optics

• Short wavelength, 12.4 keV \rightarrow 1 Å

$$r = 1.22 \frac{\lambda f}{D}, \quad \frac{f}{D} \approx 10^2 - 10^3 \implies r = 10 - 100 \,\mathrm{nm}$$

- Weakly interacting probe
- Sensitive to
 - Structure
 - Elemental composition
 - Chemistry
- Minimal sample preparation
- In-situ measurements

Sources

From Holt et al., Annu. Rev. Mater. Res.. 2013, 43

.

P. Gürtler, HASYLAB, Oct 02

1 1 1 1 1 1 1 1

10²⁷

KTH KCTH VETENSKAP VETENSKAP

OYAL INSTITUT

Types of hard x-rays optics

Achievable spot size vs. time

From Ice et al., Science 334, 2011

The Multi-Prism Lens

Vinyl LP lens

Cederström et al., Nature 404, 2000

Old LPs Find New Use in X-Ray Optics

STOCKHOLM, Sweden — In trying to develop a cheap way to focus x-rays, perhaps it should be no surprise that researchers turned to German technopop group Kraftwerk for help. The scientists bought one of the band's albums to cut up and form into a sawtooth refractive lens. Besides its low cost, the Kraftwerk album was chosen because of its very long songs, enabling the researchers to cut long sections with uniform grooves and no interruptions, said Björn Cederström, the physicist who came up with the idea. Ultimately, however, he and his colleagues at Sweden's

ROYAL INSTITUT

Tolerances

ROYAL INSTITUT

Anisotropic etching of Si lenses

Proposed by Carolina Ribbing, Uppsala University, Sweden

SEM images

Achievable spot size vs. time

From Ice et al., Science 334, 2011

Alternative historic scenario

Adapted from Holt et al., Annu. Rev. Mater. Res.. 2013, 43

Lenless coherent x-ray imaging

Idea from Sayre, 1952

Nishino et al. at Spring-8

ROYAL INSTITUTE OF TECHNOLOGY

KTH KCTH

ROYAL INSTITUTE OF TECHNOLOGY

Recent progress in KB mirrors

Mimura et al., Nature Phys. 6, 2009

In situ wavefromt correction

Mirror substrate shaped by elastic emission maching (EEM) (Mori, Yamauchi, Endo (1987)

Interferometry

ROYAL INSTITUT

Recent progress in MLL lenses

Huang et al., Scientific Reports 3, 2013

43 μm aperture
4 nm outermost zone width
6 μm thick
12 keV

Magneton sputtering FIB milling 6510 layers of Si/WSi₂

Application of MLL lenses

APS + NSLS Yan *et al.*, Scientiic reports 3, 2013

Cermet anode in fuel cell

ROYAL INSTITUTE OF TECHNOLOGY

<50 nm resolution

Figure 3 | Ni K a fluorescence (a), Pt La fluorescence (b), x-ray transmission (c) and reconstructed phase (d) images (units in radian) of the SOFC sample shown in Fig. **a**. The arrow in (d) points to a crack, which is barely seen in (a), (b) and (c). A zoom-in image of the rectangle area in (d) with a high resolution can be found in the supplementary material.

XFELs compared to 3rd gen. synchrotrons

XFEL extreme power beams

Based on SASE principle (selfamplified spontaneous emission) \approx 200 m long undulator

 \Rightarrow Coherent x-ray pulses, <100 fs

$$\lambda_{min} = 1 \text{ \AA} \Rightarrow \text{E}_{max} = 12.4 \text{ keV}$$

Ablation of gold target, VUV radiation L. Juha *et al*, NIM A (2003)

	Peak	Average
X-ray beam power	24 GW	72 W
X-ray beam intensity	10 ¹⁴ W/cm ²	100 kW/cm ²

F TECHNOLOGY

Thermal properties of materials

First diamond lens, CVDD on structured surface

C. Ribbing, B. Cederström (2000)

KTH vetenska och konst

ROYAL INSTITUT

Laser-cut diamond MPL

100 μm CVD diamond wafer
Nd:YAG laser, 10 μm cutting width
B. Cederström, C. Ribbing (2001)
in collaboration with Christoph Wild,
Fraunhofer Inst.

 $0.7\ \mu\text{m}$ expected from theory

Heat absorption

ROYAL INSTITUTE OF TECHNOLOGY

Diamond lens: steady-state solution

OF TECHNOLOGY

Extrame heal-load optics - conclusions

First laser-ablated diamond lenses showed promising focusing performance

For refractive optics in XFELs, Be and Diamond only feasible materials

For diamond \approx 100x margin

Diamond-based FZPs (C. David, PSI; group of H. Hertz, Stockholm)

- X-ray microscopy/imaging offers unique possibilities
- Hard x-ray resolution approaching the 1-nm limit
- Enabled by
 - development in sources and progress in micro-/nano-fabrication
 - new methods for wave-field retrieval
- Extreme flux and heat load on optics and specimens with new XFEO sources is a new challenge
- The future for hard x-ray microscopic imaging is bright