Future Perspective: Sensors and Electronics Integration Frontier

Veljko Radeka

radeka@bnl.gov

Instructions from the organizers:

"We encourage you to describe ways in which the physics is currently, or will be, enabled by new and creative innovations in electronic instrumentation and methods, rather than giving a historical overview ..."

> Nygren FEST LBNL, May 2-3, 2014

Electron – (hole, ion) creation energy w_i

	<u>w_i[eV]</u>	Application:
Transition Edge Sensors (TES)	EM spectrum, meV – keV,
Superconducting Tunnel June	ctions ~ 1-2 x 10 ⁻³	eV-resolution spectrometry;
(Bolometers, Microcalorimet	:ers)	precision microcalorimetry
Ge Si CdTe Diamond	2.9 3.6 5.2 ~13	Detectors for: x-ray, γ-ray spectrometry; Charged particle tracking, Monolithic Active Pixel Sensors; sampling calorimeters
Xe	16	GeV-TeV calorimetry;
Kr	19	Gas and liquid TPCs for detection of
Ar	24	neutrinos, nucleon decay, 088 -
Ne	36	decay, dark matter
Nal (+PM)	~ 200	SPECT
LSO (+APD, SiPM)	~ 100	PET
PbWSO₄ (+APD)	~ 10 ⁵	GeV calorimetry

Where is prediction on detectors possible for the next ~ 20 years?

LHC upgrades I e^+-e^- e-ion SLHC TPCs for $O\beta\beta$ collider collider and II: Increasing level 1 trigger rate from LAr calorimetry; new all-silicon tracking

decay, dark matter: scaling up to ton size

LAr TPCs: scaling up to 10-30 kton range

Detectors for astrophysics; photon science

Symbiosis of "Sensors" and Microelectronics

- "composite of two species as one unit"; "obligate" – "one cannot exist without the other"

"Silicon"

- (bump/directly bonded)
 - MAPS
 - SiPMs

TPCs

- Gas and liquid, charge and light

"Microelectronics"

- What after CMOS?

Monolithic Active Pixel Sensors (MAPS)

3D Integration of Sensors and Readout ICs ("ROICs") - Goals

From: H. Grafsma

A more sober view

Technology Challenge \rightarrow 3D or 2½D?

Charge collection in MAPS (Monolithic Active Pixel Sensors) – sensor and transistors in "standard" CMOS technology

MAPS: From Charge Diffusion to Drift

http://sus.ziti.uni-heidelberg.de/Forschung/FGDetektoren/SDA/?lang=en

SiPMs: "Dark" Noise and Optical Crosstalk → Active Quenching

11

Challenge: SiPMs to cover large areas ...

• Light collection on the barrel behind field shaping rings

Effective Gas Gain of the Double GEM Detector

Ar+20% CO₂, 5.4 keV x-rays (~1mm², 2kHz), $E_d=1kV/cm$, $E_t=4kV/cm$, $E_i=5kV/cm$

Voltage Across One GEM [volt]

Signal Formation on Wire Electrodes in Noble Liquid TPCs: Induced Signals from a Track Segment

Time scale is determined by the electron drift velocity and wire plane spacing (3 mm shown)

LBNE style wire arrangement: 3 instrumented wire planes + 1 grid plane Raw current waveforms convolved with a 0.5μ s gaussian (~1/2 drift length) to mimic diffusion

Signal Formation on Wire Electrodes in Noble Liquid TPCs: Induced Signals from a Track Segment

LBNE style wire arrangement: 3 instrumented wire planes + 1 grid plane Raw current waveforms convolved with a 0.5μ s gaussian (~1/2 drift length) to mimic diffusion

Testing MicroBooNE cold preamps with ARGONTUBE

microb

~ 5 m long electrons drift in LAR: first time!

twice MicroBooNE drift lentgh, < 1/2 E-field

Large Two-Phase LAr TPCs: The Challenge of Scaling up Readout **Electrodes** Assume $40 \mathrm{m}$ **12** m 10x10 cm² From: F. Resnati

- X-Y strip electrodes have a large capacitance
- above ~100-200 pF per 1 m strip, the S/N is affected
- signal channels: ≈ 400/m² → >5x10⁵ for ~ 20 kton with 12m drift
 (~ 25 strips-channels/ton, nearly the same as for LBNE with 2.5 meter drift distance)
- Cold electronics with multiplexing clearly needed

•Electron multiplication leads to loss of easy charge calibration inherent to ion chambers

20 kT design

A scaled down LAGUNA concept From: A. Rubbia, A. Ereditato Aiming at ≥ 100 kton

The promise of *graphene* ...

Beyond CMOS?

CMOS NAND Gate:

Any "Beyond CMOS" device should have many of the same characteristics as CMOS devices :

- power gain >1
- ideal signal restoration and fanout
- high ON/OFF current ratio ~10⁵⁻⁷
- low static power dissipation
- compatibility with Si CMOS

devices for mixed functions

<u>Physical (computational) variables</u>: charge, current, voltage, electric dipole,magnetic dipole, orbital state

Devices considered by NRI:

- tunelling FET
- graphene nanoribbon FET
- bilayer pseudospin FET
- SpinFET
- spin transfer torque/domain wall
- spin majority gate
- spin transfer torque triad
- spin torque oscillator logic
- all spin logic device
- spin wave device
- nanomagnet logic
- III-V tunnel FETs

Upon analysis: Spintronic devices have longer switching delays and higher switching energies, due to inherent time of magnetization propagation ...

After the transistor revolution:

"What about that! His brain still uses the old vacuum tubes."

It will be some time before the cartoon reappears:

"What about that! His brain still uses those old CMOS 3D systems on chip."

Creating fertile ground for future Nygrens

The gas TPC was a unique breakthrough idea – its value has been growing due to its continuing evolution. The current and future activity on numerous gas and liquid TPCs is the best tribute to David.

To continue in David's tradition with the next generation of detector researchers, some thought will have to be devoted how to maintain a climate favorable to creation and pursuit of new ideas.

In addition to carefully planned R&D programs under tight funding conditions and the resulting oversight, the burden will be on research institutions to provide continuity and a degree of freedom. A difficult task that will require considerable vision from the future laboratory leaders ...