Progress on RD53B (ITkPix-v1) testing

Daniel Antrim, Maurice Garcia-Sciveres, Timon Heim, Hongtao Yang

Instrumentation Weekly Meeting
Aug 7, 2020

Introduction

- HitOR path is a basic block of RD53B digital circuit
- Self-trigger relies on inputs from hitOR and has important use cases
- Precision ToT also relies on hitOR inputs. Particularly interesting now given the known caveat in ToT memory (Maurice's talk)
- Important to verify these features on RD53B chip!

Setup

- RD53B chip (0x10147) mounted on single chip card
- LDO powering, 1.6V for both analog and digital
- Readout using YARR system. Relying on scan results (data stream) and scope for verification

Clear ToT memory

- Resetting ToT memory (Timon's talk) improves quality of digital scan
- Before clearing: digital current reach limit, digital scan noisy
- After clearing: digital current 1.7A, digital scan clean
- Analog current 0.7A in both cases

Verification of pixel hitOR (JIRA)

- Procedure: in digital scan, enable hitOR bit for pixel in row $0,2,4,8$ of column 0/1/2/3 (corresponding to 4 hitOR paths), and probe hitOR0/1/2/3 output on LVDS
- Results: things are working as expected
- See 10 spikes corresponding to 10 digital injections, pattern repeat for 4 times for 4 pixels on
- HITOR_MASK0/1/2/3, when switched to 1 , will block the hitOR signal from corresponding core column
- Timon measured relative delay of hitOR signal do be order of 2.5 ns

	0	1	2	3				
0	(1)	(2)	(3)	4	(1)	(2)	©	4
	3.	$2 \times$	(1)	'21		4	(1)	(2)
2	(1)	(2)	(3)	3	(1)	(2)	(3)	4
	(3)	$4 \times$	(1)	2	(3)	4	(1)	(2)
4	(1)	(2)	(3)	4	(1)	(2)	(4
	(3)	$4 \times$	(1)	2	(3)	4	(1)	(2)
8	(1)	(2)	(3)	4	(1)	(2)	(3)	4
	(3)	4	(1)	(2)	(3)	4	(1)	(2)

Self-trigger digital scan (JIRA)

- Perform self-triggered digital scan with following configurations
- Self-trigger digital threshold 1, multiplier 16, delay 45, latency 60
- Self-trigger digital threshold verified: working as expected
- The rest is the same as standard digital scan, except that trigger words are now suppressed in command stream
- Scan working well. Tags have values reserved for self-trigger

Self-trigger pulse in LVDS output

Val	Selected signal	Val	Selected signal
0	Serial CMD input straight form differential receiver	21	Self Trigger trigger pulses
1	Recovered serial CMD from CDR, before any delay	22	CDR/PLL mon_up_cdr signal
2	Recovered serial CMD from CDR, after phase delay	23	CDR/PLL mon_dn_cdr signal
3	Recovered 160 MHz clock before any delay	24	CDR/PLL mon_up_fd_cdr signal
4	Recovered 160 MHz clock after phase delay	25	CDR/PLL mon_dn_fd_cdrsignal
5	BX Clock to Pixel Matrix	26	
6	Clock used for Precision ToT (640 MHz)	27	Serial stream from DATA_IN1 diff. Rcvr.
7	Pattern bit [3] of OUTPUT_PAD_CONFIG reg.85	28	Serial stream from DATA_IN2 diff. Rcvr.
8	Pattern bit [2] of OUTPUT_PAD_CONFIG reg.85	29	Serial stream from DATA_IN3 diff. Rcvr.
9	Pattern bit [1] of OUTPUT_PAD_CONFIG reg.85	30	unused
10	Pattern bit [0] of OUTPUT_PAD_CONFIG reg.85	31	unused
11	CalEdge as produced by the CMD Decoder	32	unused
12	CalAux as produced by the CMD Decoder	33	Power On Reset out (not used internally)
13	GlobalPulse as produced by the CMD Decoder	34	Channel Synchronizer Lock signal
14	Trigger pulses as produced by the CMD Decoder	35	PLL Lock signal
15	Read_Trigger pulses from the CMD Decoder	36	Activity detector on CMD input (Sec. 3.2 .2).2)
16	HitOr [3]	37	Activity detector on CMD input (Sec. 3.2 .2$)$
17	HitOr [2]	38	Goes low when low power mode is activated
18	HitOr [1]	39	GADC end of conversion signal
19	HitOr [0]		
20	HitOr logic result from self trigger block		

- According to Table 27 in the RD53B manual, we should be able to see self-trigger pulse with LVDS output value 21
- In our test, however, we could not see the pulse in 21. Instead it was observed with value 14 , which is assigned to trigger pulse from CMD decoder
- Confirmed in chip code later. Issue submitted to RD53B manual as well as chip development

Precision ToT/ToA

- Generate PToT/PToA data with following procedure (repeated for each pulse duration)
- Clear ToT memory
- Enable pixel (col, row) $=(0,0),(1,0),(2,0),(3,0)$ (one pixel for each hit bus)
- Perform digital injection with duration N
- Readout PToT/PToA data
- Some observations
- PToT/PToA data always have the format islast $=1$, isneighbour $=0$, and qrow = 196 (unphysical value used to to identify PToT data)
- PToT core column mask is working (has to be "1" to produce data). So is PToA enable bit. However, PToT enable bit CANNOT suppress PToT data

Deciphering PToT/PToA data

- First 11 bits are PToT, followed by 5 bit PToA
- PToT should be counted by 640 MHz rather than 1.28 GHz clock as mentioned in the manual (verified in chip code)
- When pulse width $=4 \times$ N PToT data output will be incomplete ("1111" suppression)

Example of digital injection pulse width 20

010	00000					0000	0000	000	000	0000	00	00	000									
	(0) 100	000		0	100	PToA1	(1111)	0100	000		0	100	PToA2	(1111)	0100	000	PToT3	0	100	000000		
NS			PToT1							PToT2										PToA3	End	of stream
	64	0	79	0	8	8	15	64	0	79	0	8	8	15	64	0	79	0	8	8		

Verilog code

```
always ff a(posedge FastClk) begin : ToT Counter_=
        if ( CntReset )
        counterVal_notmr_nocg <= 10'b0;
        else
        if ( counterVal_notmr_nocg != 11'h7ff ) //increment if not max-count, otherwise stay at max-count
        counterVal_notmr_nocg <= counterVal_notmr_nocg + 1'b1;
    end : ToT_Counter
```


Next steps

- Implement decoding of precision ToT data in YARR software (RD53B data processor and decoding tool)
- Explore scans based on PToT data
- Pixel address not from data, but rather from user input (mask staging)
- Tricky to integrate into YARR library. Plan to first implement as a standalone macro

Backup

Injection width (160 MHz)	16-bit data	11-bit PToT
2	0111000000000100	001110000000
3	1011000000000100	010110000000
4	1111000000000100	011110000000
5	0011000100000100	000110001000
6	0111000100000100	001110001000
7	1011000100000100	010110001000
8	1111000100000100	011110001000
9	0011001000000100	000110010000
10	0111001000000100	001110010000
11	1011001000000100	010110010000
12	1111001000000100	011110010000
13	0011001100000100	000110011000
14	0111001100000100	001110011000
15	1011001100000100	010110011000
16	1111001100000100	011110011000
17	0011010000000100	000110100000
18	0111010000000100	001110100000
19	1011010000000100	010110100000
20	1111010000000100	011110100000
21	0011010100000100	000110101000
22	0111010100000100	001110101000
23	1011010100000100	010110101000
24	1111010100000100	011110101000
25	0011011000000100	000110110000
26	0111011000000100	001110110000
27	1011011000000100	010110110000
28	1111011000000100	011110110000
29	0011011100000100	000110111000

