QC for Pixel Modules: Environment Monitoring

Joshua Swaim (UM-CERN REU Program)
Elisabetta Pianori, Elodie Resseguie (LBL)
LBL Instrumentation Meeting
July 31, 2020

Pixel Module Quality Control

- LBL is responsible to deliver quad modules for the inner system. This includes assembly and testing of the modules.
- I am working on environment monitoring and control of the cooling unit for the electrical tests
- Relevant environmental variables are:
 - Temperature and humidity of the module
 - Power supply voltage and current

Pixel Module Quality Control

- Must be tested at temperatures from -35C to 30C
- Temperature must be controlled and monitored
 - Dew point must be monitored
- Power supplies must be monitored
- Process should be automatic

Hardware Setup

Peltier connected to module

- Quick, precise temperature control
- Controlled using input voltage
- Monitored by NTC A

Chiller and cooling plate

- Heat sink for Peltier
- Controlled via serial port
- Cooling plate monitored by NTC B

Hardware Setup

Common Software Updates

- Chiller library in labRemote
 - An abstract chiller interface and implementation for specific our chiller
 - Communication via labRemote communication library
- DevCom classes in labRemote for NTC sensor
 - ADC interface for communication with Arduino analog pins
 - NTCSensor implementation of abstract ClimateSensor class
- New examples and Python bindings

Pixel Module QC Scripts

- Python and C++ script to control temperature
- Python scripts to monitor sensors/power supplies
 - Configurable via JSON files to specify
 - Which sensors/power supplies to monitor
 - Where data should go (console, CSV, InfluxDB)
 - Uses labRemote PS, DevCom, and DataSink libraries
 - Data in InfluxDB can be visualized using Grafana

Temperature Control

Peltier voltage controlled by a feedback loop (the PID loop) to reach and maintain target temperature

Temperature Control

NTC A connected to module NTC B connected to cooling plate

Chiller set to 20C (will be colder in future)

Target temperature is -5C

Temperature is overshot: may need to adjust PID loop parameters

Conclusion and Next Steps

- I am working on software development to control and monitor environmental variables for Pixel Module QC
 - New classes in labRemote, accessible via Python bindings
 - Monitoring scripts for sensors and power supplies
- Next steps
 - Finish creating Python bindings for DevCom sensors
 - Finish automating temperature control process
 - Finalize visualization using Grafana
 - Check that performance of the cooling unit meets our needs for QC