
POWERBOARD
IDENTIFICATION
USING COMPUTER
VISION

Ameya Kunder
24th July, 2020

Introduction

2

Read out
the serial
number

First step of automated visual inspection is
reading out what is the Powerboard in the
picture.

DIGITIZING IDENTIFICATION NUMBER

1. Cropping the etched serial number and logo from the image of
a Powerboard and saving in a directory.

2. Applying pre processing methods (e.g.- thresholding) to get a
black and white image of the serial number and logo.

3. Using machine learning to recognize the digits of the serial
number (main focus of the project is to automate this step as
this is the hardest to achieve)

Link to online repository:
https://github.com/a-kunder/powerboard_qc

3

https://github.com/a-kunder/powerboard_qc

Code for cropping

1. Reads all the Powerboard images and displays them one after
another letting the user crop the desired region.

2. Saves the cropped images in a separate folder which can be
used later for post processing.

4

Cropped Image

5

Code for processing

1. Displays the cropped image and lets the user input the channel
(blue/green/red) for which the user wants to apply thresholding.

2. Lets the user input a pixel value for the channel that they chose.
3. From what I was able to observe, regular thresholding works for

red (every pixel above the entered value is turned black) and
inverse thresholding works for blue and green (every pixel below
the entered value is turned black)

6

RGB histogram and the tool used for
thresholding
RED value: 230 (threshold)

7

Pre-processed image

8

Recognizing the digits

This process can be split into two parts:

1. Generating images for the training dataset
2. Letting the neural network learn from the images in the

training dataset and apply it on the post processed images.

9

Overlaying processed image from the
powerboard and the generated image

10

Randomly generated serial numbers

11

Code for generating labels

1. Generates random 7 digit serial number with the lab logo
2. Randomly applies Gaussian blur to some images
3. Uses image augmentation to create minor changes to the

images such as horizontal/vertical shift, zoom and rotation.
4. Changing fonts to provide more variations in the training

dataset.

12

Augmented images

13

Training and testing

1. We train the model (simple CNN) using the the originally
generated images (without augmentation) and the augmented
images.

2. We also train the model using different neural networks,
varying both in the type of the layers and the number of them.

14

Model Summary

15

Two layer CNN

Accuracy vs Epoch (for epochs = 20)

Training data size :

- 1,000 O
- 5,000 O
- 10,000 O
- 15,000 O
- 20,000 O

16

Accuracy for the
training dataset (not
the testing dataset)

For final results

Loss vs Epoch (for epochs = 20)

Training data size :

- 1,000 O
- 5,000 O
- 10,000 O
- 15,000 O
- 20,000 O

17

Table with accuracy and loss for each
digit - One font

18

Training
Dataset

Testing
Dataset

Augmented images - other fonts

19

Table with accuracy and loss for each
digit - Multiple fonts

20

Testing for
Digit 0:

~ 100%

21

Testing for
Digit 5:

~ 70%

22

Conclusion

We have a system setup for training and testing a model for recognizing digits
from real images. It’s working better than random, but still not perfect. That’s
what you need for production system.

Next steps:

- Play around with size of neutral network.
- Remove Berkeley logo from the images to simplify input vectors
- Try to improve thresholding algorithms to better remove noise
- Identify when the NN prediction is unsure (look at score) and notify user

that manual check might be needed.
- Suggestions welcome!

23

Thank you!

24

