

Convolutional neural networks for S2 position reconstruction

Applying CNNs to HEX arrays

Andrii Terliuk

(MPI for Nuclear Physics/Heidelberg University)

DANCE ML workshop 05 August 2020

What is S2 position reconstruction?

- S2 reconstruction critical task for every dual-phase TPC:
 - 3D position reconstruction
 - Background rejection

S2 position reconstruction

- Reconstruction with neural networks is very fast and precise
- Complementarity to other reconstruction algorithms for cross-checks
- PMT arrays provide essentially a 2D image
 - Can apply convolutional neural networks
 - Position reconstruction classical regression problem
- Caveat:
 - PMT arrangement often forms hexagonal bins
 → most efficient PMT coverage
 - Linear algebra \rightarrow square matrices

.

HEX to lattice transformation

- Possible option for HEX-like PMT geometry using double-width transformation
 - Empty "pixels" are introduced between the PMTs \rightarrow double the image width
 - Pros: uniformity of kernels across the board
 - Contra: images are larger in memory

Application to XENONnT top array

• Transformation of S2 pattern (simulation) in XENONnT

5

05 August 2020

Example of position reconstruction CNN

- Using Keras interface of TensorFlow
 - Preliminary network design:
 - Conv2D with size (13,7), 16 kernels (ELU activation)
 - Conv2D with size 5, 32 kernels (ELU activation)
 - Conv2D with size 5, 32 kernels (ELU activation)
 - MaxPool layer with size (3,2)
 - Dense layer with 8 neurons
 - Output layer for (X,Y)
 - Use standard TF layers:
 - Compatible for every machine
 - Fast and easy to use
 - But has extra parameters

Model: "sequential_1"

Layer (type)	Output	Shape	Param #
reshape_1 (Reshape)	(None,	33, 19, 1)	0
<pre>zero_padding2d_3 (ZeroPaddin</pre>	(None,	45, 25, 1)	0
conv2d_3 (Conv2D)	(None,	33, 19, 16)	1472
<pre>zero_padding2d_4 (ZeroPaddin</pre>	(None,	37, 23, 16)	0
conv2d_4 (Conv2D)	(None,	33, 19, 32)	12832
<pre>zero_padding2d_5 (ZeroPaddin</pre>	(None,	37, 23, 32)	0
conv2d_5 (Conv2D)	(None,	33, 19, 32)	25632
<pre>max_pooling2d_1 (MaxPooling2</pre>	(None,	11, 9, 32)	0
flatten_1 (Flatten)	(None,	3168)	0
dense_2 (Dense)	(None,	8)	25352
dense_3 (Dense)	(None,	2)	18
Total params: 65,306 Trainable params: 65,306 Non-trainable params: 0			

Example of application

- Network are trained on full waveform signal simulations:
 - Includes light propagation and PMT detection effects
 - Will be using the most accurate calibration information
- Preliminary performance:
 - About 15 mm precision for small signals
 - As low as 2 mm for at large signal amplitudes
 - Training can be optimized for a given amplitude range/analysis
 - Will be revised with more calibration data

Example of reconstruction performance for simulated point-like S2 patterns

*simulations of electrons at the surface \rightarrow no diffusion included

'

Dealing with missing information

- Dealing with missing PMTs
 - Example of toy simulations with 4 "switched off" PMTs
 - Network successfully learns and mitigates negative impact such PMTs

Next steps and summary

- We develop dedicated "HEX" CNN:
 - custom TF HEX-convolution layers
 - reduced number of training parameters
 - "physics" model with potential of P6 rotation symmetry and interpretability
- Summary:
 - Successful application of CNNs to HEX bins using double-width transformation
 - Expected application soon using the data (detector in commissioning phase)
 - Dedicated HEX convolution layers are in development

Example of kernel with R=(2+1)

-