

Progress on software implementation of RD53B data encoding/decoding

Maurice Garcia-Sciveres, Timon Heim, Hongtao Yang

Lawrence Berkeley National Lab and University of California Instrumentation weekly meeting Mar 27, 2020

Introduction

- RD53B data stream has variable instead of fixed size
 - Due to stream compression (limited bandwidth)
 - Add great complexity to data decoding
- Goal: implement RD53B data encoding/decoding in SW
 - Encoding part will be used for development and validation of decoding, and eventually become part of SW emulator
 - Performance not a big concern
 - Decoding part will eventually deal with real data from RD53B chips, and be compared with FW approach
 - Performance is crucial
- Today we will discuss the flowcharts for the encoding/ decoding algorithms (as preparation for implementation)

Basics

- A stream could contain one or more events. Each event:
 - Is identified by a tag, and possibly also L1ID and BCID
 - May contain 0 or more pixel hits
- With core column (ccol) and quarter row (qrow) indices, one can uniquely locate a qrow, which is the basic unit for saving hit maps (hmap) and time-over-threshold (ToT)

ccol (6)

Not first hit and

previous islast !=

- A "core" in RD53B chip is a 8×8 pixel matrix.
- A core can be further divided into four (qrow), each consists of 2×8 pixels

islast (1)

Hongtao Yang (LBNL)

Intenal tag (11)

First event

Tag (8)

Mar 27, 2020, Instrumentation Weekly

Loop over all even

isneiahbor (1

I oop over all hits in the event

grow (8)

isneighbor == 1

Encoding: build one stream

Hongtao Yang (LBNL)

Mar 27, 2020, Instrumentation Weekly

Encoding: split stream into 64-bit data blocks

- In SW the first bit of a 64bit block will always be New Stream (NS) bit
 - The first block of the stream has NS=1
 - The trailing blocks, if any, have NS=0
 - Chip ID, if exist, will follow NS bit
 - L1ID and BCID will follow the event tag

Decoding

Hongtao Yang (LBNL)

Mar 27, 2020, Instrumentation Weekly

BERKELEY LAB

- In decoding process, the software is receiving a continuous flow of data blocks, which could span over multiple streams
 - Use next NS == 1 OR orphan bits (000000) to decide the end of current stream
- The data processing code for RD53A in YARR is a good starting point
- Minimal sanity check during decoding to ensure performance

Next steps

- Implement encoding program, which will provide a stream for decoding
 - Largely recycling Noemi's code for now. Improvements can be made later
- Implement data structure for RD53B data block
 - Will need to retrieve next data block once the current one is gone through
 - Could happen in the middle of decoding! A simple "for" loop over fixed-size blocks will thus no longer work
 - Basic idea: move the index of last unprocessed bit along the stream