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Involvement in prototype chips.

- Bandgap reference circuit, IBM 90 nm, March 2010

- With enclosed layout transistors

- Belongs to DHP 0.1, a readout chip for the DEPFET technology
- Spanish program for particle physics (FPA2008-05979-C04-02)
- 1 conference paper

- APDs chip (Run 2), HV-AMS 0.35 pum, April 2010

- Several GAPD pixels with different readout circuits + small GAPD arrays
- First GAPD pixels with digital output at the Univ. Barcelona

- Spanish program for particle physics (FPA2008-05979-C04-02)

- 9 conference papers + 8 journal papers

- APDs chip (Run 3), HV-AMS 0.35 pum, April 2011

- Large GAPD array

- Characterization in beam-tests at CERN

- Spanish program for particle physics (FPA2010-21549-C04-01)
- 4 conference papers + 3 journal papers (+ 2 submitted)

- 3D APDs chip, Global Foundries 130 nm/Tezzaron 3D, not submitted
- Large GAPD array

- Explore a 3D technology (improve GAPD fill-factor)

- AIDA project (Grant Agreement 262025)

- 1 conference paper + 1 journal paper
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> Outline

1. Potential applications

* Future linear lepton colliders
» Detector systems in ILC/CLIC

2. GAPDs in CMOS technologies

* Principle of operation and figures of merit
* State-of-the-art
* Front-end electronics

3. Large arrays in a HV-CMOS process

* Design and characterization

4. Large arrays in a 3D process

* Design

Conclusion
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1. Potential applications

* Future linear lepton colliders
» Detector systems in ILC/CLIC
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Potential applications.
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HEP experiments. Future linear lepton colliders.

* Target - Study in great detail the Higgs boson discovered recently at CERN
* How? - At a future linear positron-electron collider

* Two alternative proposals underway:

Linacs

Linacs

Interaction Point

326 klystrons 326 klystrons.
| | circumferences

33 MW, 139 ps | 33 MW, 139 s
delay loop 73.0 m
drive beargfaccelerator CR1146.1m drive bearf\accelerator

CR24383m
1km 1km
delay loop | > <| delay loop
@ @ decelerator, 24 sectors of 878 m

occ SRR LR Y S T T T
/450t 2 245
TAr=120m € main linac, 12 GHz, 100 MV/m, 21.02 km e* main linac TAradius =120 m

48.3 km

Interaction Point

CR combiner ring

TA  turnaround

DR damping ring

PDR predamping ring

BC bunch compressor
BDS beam delivery system
IP interaction point

- dump

e~ injector,

* Energy 500 GeV (1 TeV upgrade) 500 GeV (3 TeV upgrade)
*  Accelerating gradient 31.4 MeV/m (SCRF) 100 MeV/m (2-beam acceleration scheme)
*  Luminosity 2.70-10%* cm™2s1 5.90-10%4 cm2st
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HEP experiments. Detector systems for ILC/CLIC.

* Detectors - To reconstruct the events generated right after the collisions

* Two validated detector proposals =
(adopted by ILC and CLIC)

* Subdetector arrangement (ILD):

Vertex detector Electromagnetic calorimetry

- Barrel - ECAL (W absorber)
- VTX (3 double Si pix layers) - To measure particles
- To measure space points energy

where particles are produced Hadronic calorimetry

Tracker detector - HCAL (Fe absorber)
- Barrel - To measure particles
- SIT + SET (2 + 2 Si strips) energy

- TPC (MPGD readout)

- End cap

- FTD (2 Si pix + 5 Si strip disks)

- ETD (2 Si trip layers)

- To measure track curvature of GAPDs aimed at ?
charged particles (momentum)

A = Department
@ SEEEE]  of Electronics
9 Universitat de Barcelona

Muon system
- To identify isolated muons

Coil
- Magnet system (3.5 T)
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HEP experiments. Tracking detector requirements.

The physics targets at ILC and CLIC impose very demanding requirements on tracking detectors:

Detector design

Beamstrahlung process:

Requirement Value
o.point <5 pm
0,
Material <0.15% X, per layer (IL‘D)
budeet <0.30% X, per layer (SiD)
g (J, Coulomb multiscatt.)
Granularity High
10
Occupancy <1%

(with background hits)

ILC = 1 kGy/year (TID) +
Radiation 1011 Neq /cm?/year (NIEL)
tolerance CLIC - 200 Gy/year (TID)

+10% n,, /cm?/year (NIEL)

Power <a few mW/cm?2

+ EMI immunity and affordable cost

Pixel size <17 um

Background hits

unwanted) ——— 5
<150 um per layer (ILD) ( ) Z"
<300 pum per layer (SiD) o

+ no active cooling

High number of pixels

High timing resolution:

- Single BX
- Time-slicing (each 50

25 um x 25 um sensor at\ILC)

- Time-stamping

N

Mutual beam-beam
interaction

ps\for a

ILC/CLIC beam structure:

Include
A bunch train inter-train period
mitigation
gatio {(~1 ms ILC) (199 ms ILC)
techniques [156 ns cuc; (~20 ms CLIC)

. = Department
----- EE=EE  of Electronics
Unlver51tat de Barcelona

Low power
x 2820 BX (ILC)
x 312 BX (CLIC)

- .4— BX=337 ns (ILC)

0.5 ns (CLIC)
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HEP experiments. Tracking technology options.

New CMOS pixel technologies are being developed in parallel with the accelerator:

Requirem./Detector DEPFET FPCCD Chrono. Timepix GAPD o]l

O point (KM) ~1 = ~3 23 ~5 ~1

Material budget (um) 50 50 50-100 300 250 70
18.4x 18.4 5x5 10x 10 55 x 55 20 x 100 113?;7755)(

Granularity (um x um) 20x 20

integration stamping stamping

single BX  integration

Timing integration  integration
i 12 o 2 - -
Radiation tolerance 10 kGy 1013 - Jem? 102 e-/cm 4 Mgy 1 kGy
16 - 886 - -
Power 5 W/detec. mW/ch mW/cm?
Fill-factor (%) 100 100 100 87 67 (90) 100
SOI Pixel Detector

Si Senso!

| Substrate)

CMOS Circut - ;J g
MOS Nﬂos 7
aox(emeao xide, )
ﬂ
ot

BPW(Bu ied p-Well)
i " "_ 7
ivi
o #
\ B

(High Resistivity

* Any of these technologies can be mtegrated ina 3D process

. = Department
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A decision on the tracker detector technology has not been made yet...
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HEP experiments. Tracking technology options.

New CMOS pixel technologies are being developed in parallel with the accelerator:

Requirem./Detector DEPFET MAPS FPCCD Chrono. Timepix GAPD o]l
Opoint (um) ~1 ~3 — ~3 2.3 ~5 ~1
Material budget (um) 50 50 50 50-100 300 250 70
. 13.75x
Granularity (um x um) 20x 20 18.4x 18.4 5x5 10x 10 55 x 55 20x 100 13.75
Timing integration integration integration stamping stamping single BX integration
. . 10 kGy 12 2 - -
Radiation tolerance 10 kGy 1013 - Jem? 102 e-/cm 4 Mgy 1 kGy
250 16 - 886 - -
Power 5 W/detec. W /cm? mW/ch mW/cm?
Fill-factor (%) 100 100 100 100 87 67 (90) 100

SOI Pixel Detector

CMOS Circut
N s %
_/
< sox(suneao xide, )

b

\
BPW(Bu ied p-Well)
il

Si Sensor "
(High Resistivity
Substrate) p
Any of these technologies can be mtegrated ina 3D process

A decision on the tracker detector technology has not been made yet...
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> Outline
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* Principle of operation and figures of merit
* State-of-the-art

* Front-end electronics
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Principle of operation of GAPDs.

An avalanche photodiode is based on a p-n junction

p-region depletion region . ‘n-region
pe o »e
Np
Impurity RS
NS NSNS
RTARTAN]
distribution

2e¢ Ny4-N
W= = Vi
q Ny+Np
Electric field &s
distribution E (p=y 4
.xp T Xn .
Zq NA + ND
|Em| = ‘l_ * Vi
Eg .

|Enl

»\

If an external bias is applied

Breakdown

Reverse Forward
’e

LA

Vep

Geiger- , !
mode i

New carriers are
generated by
impact ionization

(avalanche
multiplication)

|[En| TT,W TT

Linear
mode

V IEL LWL
~ Shockley eq.
It = Iy -exp((qV/nkgT) — 1)

Macroscopic dEtectabIe
curren

| Geiger model 1 \
Distance

Geiger APD (GAPD) Linear APD

Gaingapp = Cp " Vov

Potential
Department

va riatioy
m o] of Electronics
9 Universitat de Barcelona

Time
Electric field

e—and h+
(self-sustained)

- Gaingpp=10°-10°

- Binary device

- To detect single
photons and MIPs - To determine energy

- Not self-sustained
- Gainypp=impinging
radiation flux
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Main figures of merit. Noise.

Primary carrier

Sources of noise counts in GAPDs:

triggers avalanche

Geiger mode

1. Dark counts (uncorrelated noise)

(a) Thermal generation (SRH)
(b) Trap assisted thermal/SRH generation

Distance p-region depletion region n-region
E (c) Band-to-band tunneling
¢ ) ._'(:)_'(b)h"' (d) Trap assisted tunneling
(due to absorbed 1.12 eV trap - Measured as dark counts/s (Dark Count Rate)
radiation or other E ¥ L - Dependent on - fabrication process (traps)
phenomena > ! » - sensor su‘rface (area)
noise) e—4 - rever§e bias overvoltage (V)
@ (c) -working T
Time S @ (d) -Reduced by -aread, Vo 4, Tl
e (e

2. Afterpulses (correlated noise)

(e) e— (left) and h+ (hole) afterpulses

- Dependent on - trapping centers

— - number of charge carriers
E -Reduced by - C, (parasitic capacitance) |,
3. Crosstalk (correlated noise) NP+ Active pixel Unbiased pixel h'Dens;ya(;r;':) - Z‘;g\éet}‘:::rlﬁhmg
. OE+1! - I
(f) Electrical crosstalk S
4.4E+07
- Dependent on - pixel separation - .
- Suppressed by - using different wells ' photons emitted due
reco @) hy to

(g) Optical crosstalk

- Dependent on - pixel separation
-Reduced by - limiting Geiger current
- using trenches

Department
of Electronics

o]

I3-
(5]

Universitat de Barcelona

Y (um)

electroluminiscence

avalanche
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Main figures of merit.

Primary carrier High energy particle detection:
triggers avalanche _ S i
Geiger mods p-region 9 depletion region ::n-reglon
bistance, (1) P (2) (3) - MIPs > 80 e™-h* per Si pm
B - Probability for a primary e™-h* pair to trigger an
avalanche:

(due to absorbed
radiation or other
phenomena >
noise)

Ptrigger () = Pe(®) +[1=P.(x)] - P, (x)

d
&Pe (x)=(1-P) - Ptrigger

d
Time Electric field &Ph (X) = _(1 - Ph) " Op\ Ptrigger

- Po(x) >> P, (x) ionization coefficients
»x = Pyigge(X) is maximum at the center of the junction
and decreases to 0 at Xor Xp
- In 2, carriers may start an avalanche breakdown
-In 1 and 3, carriers have to diffuse to 2

|Exl
Photon detection probability [laser with 80-ps pulse width]
num e~ — h' created T T T T

PDP = QE() - Py, 'FF,  QEQ) = num incident photons Il

- It ranges from 350 nm to 1000 nm in CMOS GAPDs

FWHM = 160ps

FW(M/100) = 550ps

Event counts

Time resolution

——
- Time delay between the arrival of radiation and the leading edge of the output pulse "
- Depends on sensor and readout electronics oo S L1 LWL
- Affected by fluctuations (sensor - depth and position) Time [ns]

D. Stoppa et al., IEEE Sens. J., 2009
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State-of-the-art. Custom vs CMOS GAPDs.

Custom GAPDs
a. Reach-through b. Planar c. Double epitaxial
- = 7 N = 7 T o 7 - Excellent detection and timing properties
\ P ) n n / \ P ) \ - Low DCR < 1 kHz (ultra-clean fabrication)
PEB avoided by / / o \| -Lowafterpulsing
. . - Large area detectors are possible
P aqgumr'art‘enmg guard ring guard ring gea . P
o p-substrate n-substrate - Not suitable for integration of sensors +
Mclntyre (1970’s) Haitz (1960’s) Cova (1980's) readout electronics
CMOS GAPDs Typical noise trend in CMOS GAPDs
d- HV'CMOS 100K
T < T - | different configurations A1 sT
RG] 5 T Severa g * 90 nm
lp) (pJ are posshible: = 130 nm
\ / - n*on p-substrate, n-well as guard ring 10k Z 150 nm
eep n-tub, - p*-diff in deep n-well, low doped p as ST AR 180 nm
guard ring guard ring i BN O 035um
p-substrate NE X 0.35 um(*)
= D> 0.7 um
Rochas (2003
( ) i 100 ke Ol28] A 0.8 pum
g [29] (5 ol bn ot
- Possibility to integrate sensors + readout electronics on the same chip g 10 ["‘“"""‘lﬂﬁgj}u“w %ne]
z 217[19]
- Possibility to include advanced functions in the in-pixel electronics Q [24]123.26] o
- Very good timing properties 136] =V [33] A
- Acceptable detection properties 1 o >rz2
- Moderate DCR without STI (1 Hz/um? < DCR < 102 Hz/um?)
- High DCR with STI (DCR = 50 kHz/um?) 1om +——r—r+—r—+—F—+——7—+—7—"—7"—F"—71"—"—7"""
- Low fill-factor (< 10% in many cases) 00 01 0z 03 04 05 06 O7 08 09 10
- Low cost Tech. node (um)
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Front-end electronics. Quenching and recharge circuits.

Passive guenching and recharge

- Quenching - lower V., .=Vy, after an avalanche
- Resistive element in series with the sensor
- Resistor with 102 kQ (area 1) or MOS transistor
with proper (W/L) and bias
- 1= (Cp+C) Ry

Viias=Vep *+ Vov

Vour

| - CMOS inverter “Tr=(CotCo) Rq

- Recharge - increase V, >V, after quenching
s
= ' - Poor control over quenching and recharge times
______ =..J - Voltage comparator :
-Rq T, 1o ¥, Ty 1 (and vice versa)

- - Quenching element is used for recharge too
1 Readout circuit: Q g g
- Source follower

Active quenching and recharge

- Quenching - sense the rising edge of the
Vao +Vor Voo avalanche and react back on the sensor (V,,.<Vgp)
- To minimize the number of generated carriers
- Difficult to implement
- Required circuits have to be faster than 10?2 ps
—{>- Recharge - full control over the recharge time
- MOS switch

<2etive recharge hSldsf] - Possibility to introduce a hold-off time to
release the trapped carriers (afterpulsing { )

dead time

PQ AQ hold-off AR ~i

_active quenching
o ~S

-

ignition

. = Department
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Front-end electronics. Sensor mode of operation.

Free running

- The sensor is always ready to trigger an avalanche

Time-gated mode

- Valid for those applications where the signal time arrival can be known in advance (HEP experiments,
time-gated FLIM or gated-SPECT)

- The sensor is periodically activated and deactivated under the command of a trigger signal
-The active short periods (discretized measurements) can be made coincident with the expected signal

arrival
- Reduces the detected dark counts, avoids afterpulses, reduces the detected crosstalks
- Improves efficiency . Veo#Vov Voo

High freq. V.,
(sinusoidal, square)

MOS switches

|0—CI GAPD “off’

Vour

recharge D—|

collider
—
——
<
)
A

GAPD bias 4
VeotVov ] | GAPD active windo [ ]
ve win W
/ ~J IVov =
I'd
v

BD
ton
——
non-active window VGATEI | | | | | | AV‘W recharge —| —| —| I
<+ DD
time' Vap ton | ton -
GAPD ‘off —|— L
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Front-end electronics. Array architecture.

GAPD cameras are composed of a moderate or large number of pixels

Random access

(a) Sequential readout pixel-by-pixel

— —HH UL I (b) Sequential readout by columns
==i== =t Wi iy oW

585550 [ | e
- D D ] [] [:l [:I [:l (c) Event-driven readou

- Pixels are read out asynchronously when an
== | (H 1 LI i
event is generated
E D D - |__r—| y rj E| - The address (row) of the pixel is sent through

the output column
- Aimed to very low intensity applications

_ ULl

(d) Latchless pipelined readout

»
>

- Each column is used as a time-preserving delay
line

- The delay time contains the information about
the position of the pixel

- The information can be reconstructed by a TDC
at the end of the column

It O 5=, = e e
I = e =

o o A N A A
OOOoP0 . [EEEE8E
=

N
TN =
N =

JOEACIENCE — EoCo e e

N
JUCE AT
) ) T

<

—_
(2]

~

d

—_
—
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Why Geiger-APDs for tracking?

* Aparticle tracker is a yes/no application
* Itis not necessary to measure the energy of the particle
* Abinary device like a GAPD suits the application

e Performance of GAPDs:

*  Virtually infinite gain of 10°-10°
* High sensitivity (single-photon sensitivity)
*  Fast timing response (possibility of single BX in some future colliders)

* Implementation:

* Possible in CMOS technology
* Simple design
* Simple readout (it’s a binary sensor)

* Questions to answer:

* Noise? Fits collider requirements?
* Sensitivity of GAPDs in particle tracking?
*  Fill-factor? Need to cover >90% of the area

20/57
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INEPotentiallapplications
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* Design and characterization
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GAPD pixel array for particle detection. Design.

* Target - Reduce the high pattern noise typical of GAPDs
* How? - Analysis of different possible solutions:
* Dedicated technologies with lower doping profiles - expensive (in favor of standard CMQOS) ®
* Active quenching = increase of area occupation + reduction of afterpulses only ®
* Cooling methods with air cooling - ok, but not main idea ©
* Time-gated operation - ok (fine for HEP applications) ©
* +operate at low V,, to reduce the DCR (fine for HEP applications) ©

Time-gated GAPD pixel with low V,,, GAPD design in a 0.35 um HV process
Vv = Vap + Voy substrate cathode anode cathode substrate
+ GNDA Voo contact \ contact contacts contact / contact
K sensitive area\
INH e = I ]
2 = Ip_l I"_, multlpllcatlon
5 E deep |y region ‘\deep
Mg, g E p-tub p-tub
Aly =8 v‘\guard ring/v
S ,—D Voura deep n-tub
Mo ll} L‘ p-substrate HV-AMS 0.35um

RST - p* diffusion on an n-well
1 - p implantation as guard ring
< GNDA - Round shaped corners
time-gating; CMOS .
MOS _:inverter ; 1-bitmemory cell : pass gate - Size = 20 um (x) x 100 um (y)
+—>< > >

>4 - Based on A. Rochas et al., Rev. Sci. Instrum., 2003
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Time-gated GAPD pixel with low V,. Design.

1) Gate-on period is started. Recharge and observation.

2) Gate-on period. Observation (only).

Viv = Vap + Voy Viv = Vep + Vov
+ GNDA + GNDA VDD

P |
T %ﬂ T b % [T

Vs

Vs

[ to readout circuit [ to readout circuit

Avalanches can E»E Avalanche
1 I | | | | |
happen HHH 0V= n'q/CP=|G'At/CP

= GNDA

= GNDA
AtRST afewns

3) Gate-off period.

Vi = Veo *+ Voy Time-gated photodiode
+ GNDA \{':.'P

- Long enough gate-off periods the suppress the

T « - afterpulsing probability
AV<Vg; Voo Elk? | | - Short gate-on periods to reduce the DC probability
l A _I_/J_

- Very short gate-on periods to eliminate the electrical
D to readouf circuit crosstalk probability
off

R T
VovsVio | | ‘ - Conotodiode = 540.19 fF at 1V of Vo,
Avalanches are -Co=15fF
RST

not possible !!!

S

E. Vilella et al., A gated single-photon avalanche diode array fabricated in a conventional CMOS process for triggered applications, Sens. Actuators A: Phys 186, 2012.
m A 4 = DfeE?arttme_m
e o lectronics

Universitat de Barcelona
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Time-gated GAPD pixel with low V,. Design.

e Target -> Voltage-mode readout circuit to operate the sensor at low V, and reduce the DCR +
with low area occupation
*  Problem - Difficult to implement in HV-AMS 0.35 um
e Example readout circuit - 1 voltage discriminator (CMOS inverter with V,=V,/2, V,=3.3 V)
- 1-bit memory cell (time-gated synchronously with the sensor)
- 1 pass gate to activate the pixel readout

Vv = Vep + Vov Voo
T
K INH
Meo "o _4 Me+ = fobs = AE - Lobs = = tobs -
on off Vov Voo Voo Voo Voo
- ][V ‘
§J i Nrop=1 { Vss z) Vss > 3 Vss . Vss 5 Vour
1 My > My ?
— | = tobs'a=
[ avalanche 0 counts
@ not detected

RST The generated
|—| avalanches are not

detected...
V Vss
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Time-gated GAPD pixel with low V,. Design.

e Target -> Voltage-mode readout circuit to operate the sensor at low V, and reduce the DCR +
with low area occupation
*  Problem - Difficult to implement in HV-AMS 0.35 um
* Implemented readout circuit - 1 voltage discriminator (CMOS inverter with V,,=V,/2, V,,=3.3 V)
- 1-bit memory cell (time-gated synchronously with the sensor)
- 1 pass gate to activate the pixel readout

Vv = Vap + Vov + GNDA Voo + 2-grounds scheme (GNDA, VSS)
I
K INH
@lo _4 Me+ = fobs = AE - Lobs = = tobs -
on Off Vo\i VDD VDD VDD Vﬂ
. P Al | r'v'h
R P L gtV z) —| L 8 () Vss oV
= 7 = 5 out
GNDA 1 My > My ?
— | = tobs'a=
[ avalanche 1 count
@ detected

RST It possible to detect
= avalanches at low
o
x 1 overvoltages (Vo < V).
o = GNDA V Vss
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Time-gated GAPD pixel array. Design.

Vin=Veo+Voy+GNDA Voo

:
| 3 |
to output

6 column line
&
c
3

5
=
Mz >~j My,
! | MN.'! !
CLK1 ! CLK2,
Ve
[0.18ns | 0.12ns ;0.02ns ' 0.12ns |
—p

Features

- Monolithically integrated with the 0.35 pm HV-AMS
standard CMOS technology

-10 rows x 43 columns

- Total sensitive area of 1 mm? (to facilitate particle
observation at beam-test)

- Sensors placed in the same well to increase the fill-factor
(FF=67%)

- Readout circuits placed between two consecutive rows of
sensors, pixel pitch =22.9 um x 138.1 um

- Radiation effects mitigation techniques and on-chip data
processing are not included

E. Vilella et al., A low-noise time-gated single-photon detector in a HV-CMOS technology for triggered imaging, Sens. Actuators A: Phys 201, 2013.

. Department
Mﬁ"‘” SRR of Electronics

Umvemtat de Barcelona

Chip

- Sequential readout by rows during gated-off periods

- Sequentially activating Cy,,,, with m=[1,10]

- Each output column connected to output buffer and
output pad

- No multipliexers nor selection decoders

- 43 output pads + 13 control signal pads (RST, INH, CLK1
and the ten CLK2) + power supply pads

- At (from Vg to V xrcn) =0.32 ns

- At (from V| y;c, to outside the chip) = 1.33 ns (0.12 ns of
CLKZm +0.26 ns of output buffer + 0.95 of output pad)

¢ 3887 pm >

(NESISESRR AN S NS RCRCNE HENE NPHF N N NN

u1om 1em e [ IRVERVERVIRY

3217
pm

SEEFSEEEE

L‘“l‘!nuuuuuuuuuuuu

WRZLZN /20 Z0 U R PR BRI G BRI R S AR A QSRR
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Time-gated GAPD pixel array. Characterization.

*  Current-voltage curve (at room temperature) 001+

1E-3

O 1E4 -

I6(Vep)
a8
1Ll [=I=T=1=]
| | 1E6 -

r_ — 4-wire
1E7

method
' 1E8 o

1(A)

i | —*— AMS R2 C16 20x100 light
—e— AMS R2 C16 20x100 dark
9

)
1E-11 T T T T T T T T T T 1
180 182 184 186 188 190 192 194 195 198 200
* Noise and signal Yo
* generate the control signals (t,,., t,« readout)
Testing board * count off-chip the number of pulses per pixel * tope toff

* manage the communication with a PC * num. repetitions (nrep)

conltrol
GAPD 7 FPGA i R USB X GAPD
ASIC configuration ) ‘| controller ’ control
\% — \
)9 Fy
S\& output channel ALTERA Cyclone IV (—'_I_)
[ ya e pe——,
o / |

counts per pixel

voltage
(data processing)

source
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Single pixels with voltage-mode readout circuit. Characterization.

*  Afterpulsing probability (in darkness, room T)

-tops=12 ns, n,,=10°

rep

- Measured at different t ,

noise counts
-NCR=————

tobs X Nrep

240 -

220 |

200
180 —

160

140

- DCRis high; DCR { as Vg, 4

120

9,

NCR (kHz)

2% a 28 ¢

100 ] /11% att,=50 ns, Vo,=1V
80

60

o4
0 50 100 150 200 250 300 350 400 450 500 550 600

t_ (ns)
- Long enough gate-off periods suppress the
afterpulsing probability
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Time-gated GAPD pixel array. Characterization.

Dark count rate (in darkness, room T)

“Vgu=1V, 2V (Vgp=18.9 V)
- to,s=1274 ns, t 4=1 ps (for data transmission to PC)

noise counts
—————, no afterpulses but crosstalk

tobs X Nrep
Spatial map (V=1 V)

Cumulative plot
Hot pixels

- Cumulative percent of pixels < a certain DCR

-DCR =

1000
{[—=—=V,, =2V DCR (2 V, mean)=139 kHz
DCR (1 V, mean)=67 kHz

1=V, =1V

High DCR due to

N
i 100 - large sensor area
o ]
8 2 orders of ,
i 0
magnitude 0
(dependence y - 70
to defects) R
v ‘ .,;."‘I"-“ Sfo
’?,LII < 3
[
10 T T T T T T T T T T T ,L'z/ ?0 "\
60 80 100 Y 3 7s W
A N s 7o C’O

Percent of pixels (%)

With the time-gated mode - DCP=10"* (t,,.=1274 ns) - DCP=1072 (t_,.=4 ns) [DCP = DCR x t ]
29/57
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Time-gated GAPD pixel array. Characterization.

e Electrical crosstalk

* The GAPDs are placed in the same well to reduce the dead area and increase the fill-factor (FF=67%)

substrate  cathode Minimum anode

cathode substrate

contact contact contacts
se pa rat on
actlve area
= - ..

ptub ptub ptu

[ +|
deep ||multiplication region||deep deep mumpm:atlon region deep
ptub

b

El = 6 1.70 pm \ uard rin ~
|:E| =10 V/qu A=3.90 pm ¢ ¢
: B=22.90 ym !

deep ntub

/ contact/ contact
— —

X
B ———

HV-AMS 0.35 um

p substrate

*  Presence of electrical crosstalk?

*  Maximum concentration per avalanche - C=1-10'3 holes/cm?3
* Concentration to trigger a new avalanche - C’=1:10° holes/cm3

*  From Fick’s 1st and 2nd laws:
* At=164 ps > Cisat Ax =3.90 um
* At=6.23ns > Cis at Ax=22.90 um

*  Electrical crosstalk should take place between 164 ps and 6.23 ns
* Good agreement between theoretical and simulated results

*  Possibility to reduce the electrical crosstalk with t

obs

<6.23 ns?

-

Z (um)

Simulations with ISE-TCAD

N P+ Active pixel Unbiased pixel

Z (um)

At=400 ps
| (maximum concentration)
20 y(um)‘ilo 6'0 '

10

P N P+ Active pixel Unbiased pixel

B

At=6 ns
(highest concentration

reaches neighboring GAPD)

A. Vila, E. Vilella et al., A crosstalk-free single photon avalanche photodiode located in a shared well, IEEE Electron. Device Lett. 35, 2014.
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Time-gated GAPD pixel array. Characterization.

* Characterization of the electrical crosstalk as a function of t
* Set-up #1:

obs

- Electron beam
- Beam energy = 1 keV
-Beamsize=1 nm

- PCB with chip + FPGA placed in the
vacuum chamber during the
measurements

- Control and display system placed
outside the machine

- t,,=100 ns (maximum crosstalk)
- t,#=1 us (no afterpulses)

- Ny, =1-108
GAPD array - Problems related to the set-up:
PIXO PIX1 PIX2 PIX3 PIX4 Progressive oxide charging due to
. . electron beam (change of V)
Noise countsinthedark 036k 7.15k 0.54k 5.40k 4.21k - Not possible to completely
Net counts after beam - - - 0.15k 6.70k characterize
Negligible crosstalk j 2.2% -> Maximum electrical
(2nd neighbor and beyond) crosstalk (1st neighbor)
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Time-gated GAPD pixel array. Characterization.

* Characterization of the electrical crosstalk as a function of t
* Set-up #2:

tons t, PIX0 PIX1 PIX2 PIX1 PIX4
(ns)  (us) (2.28 kHz) (42.84 kHz) (3.33 kHz) (32.55 kHz) (25.57 kHz)
3.7 9.6 6 xt (0.23%), 0.02 dc 2618 6 xt (0.23%), 0.03 dc 0 xt (0.23%), 0.03 dc 0
5 17.0 51 xt(1.50%), 0.03 dc 3407 66 xt (1.93%), 0.05 dc 5 xt (0.15%), 0.55 dc 0
7.4 380 119 xt(2.33%), 0.09 dc 5136 148 xt (2.88%), 0.13dc 13 xt (0.25%), 1.23 dc 1
11.1 85.8 189 xt(2.45%), 0.19 dc 7732 266 xt (2.93%) 0.28 dc 20 xt (0.25%), 2.79 dc 1
—o— 1™ neighbour
30 —— 2" neighbourl - Noise counts generated by the sensor in the dark
N — Vo, =1V
2,5 — . ov
A xt=2.6% (m7aX|mum) - t.p=3.7 ns (limited by control system) - 37 ns
201 attop,,>7 ns - t,5=1 ps (no afterpulses)
g - # coincidences>20 k
g " coincidence counts neighbor
@ -xt = , , - 100
5 104 noise counts emitter
xt = 0.23% (minimum)
05 att,, =3.7 ns xt = 0.25% - Good agreement between
W s —» Random coincidences - Theoretical calculations
00 + optical crosstalk (?) - ISE-TCAD simulations
o 5 10 15 20 25 3 3 40 - Experimental measurements
t  (ns) with set-up # 1 and # 2
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Time-gated GAPD pixel array. Characterization.

* Photon detection probability

V=1V, 2V
- tops=14 ns, tg=1 ps, t,=1s (n,,,=71 Mframes)
- Tested with a UV-VIS spectrophotometer and calibrated reference detector

UB mesurements (average value) C. Niclass et al, Proc. SPIE, 2006
- Results are below expectations due to passivation layer
= —+—0.8um CMOS at Ve=5V
14 peak (A=610 nm) . v =2Vl 29 —+—0.35,m CMOS" at Ve=3 3V
] —»113.2% (2 V) ov 40 —v— 0.35um CMOS" at Ve=4V
12 4 —>—=V_ =1V | + original 0.35um CMOS** at Ve=3.3V
)
& 354 * redesign: slightly larger active area and
10 | = 1 without any passivation layer
3 304 ** original design: with a thick polyimide
8 3 | passivation layer
—_ 9 o ~
2 £ =2
o o
6 2 204
£ 5.5% (1 V) 5
2 8 15
[ =
S 104
24 s ]
o 5
0| |
L AL AL S L L L L . L D DA L 0 -‘-7-’----. ----- L o | R |--$-;‘|
400 450 500 550 600 650 700 750 800 850 900 950 1000 400 50 600 700 800 900 1000

A (nm) Wavelength [nm]

total ts—noi t
Calculated as - ppp = - "= TRONe TOUAE (corrected for the detector FF)

incident photons
b_a_» Departme_m
L=eml o Electronics
9 Universitat de Barcelona
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Time-gated GAPD pixel array. Characterization.

CLK1

Dynamic range

I
- Defined as - DR = log, ( Sat)
lin

- I, = minimum detectable intensity (SNR=1)
- |+~ maximum detectable intensity (saturation of the readout circuit)
- In imaging applications, it determines the contrast of the generated images

Set-up

- Pulsed light source

- Variable light intensity (A=880 nm)
~Vg=1V

-tops=1274 ns, 14 ns

-tg=1us

- Ne,=10 Mframes (counter capacity)

tobs |t—
14 ng|

v ¥

tuhx -
1274 ns

LED

Immﬂaw
(B)

Light
emission

. Department
UEEEEEL  of Electronics
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Result (average value)

counts

10M

—x—t =1274ns

VR VAN S VR

j| ——t,  =14ns

saturation

level

noise counts

1M

KKK

lth-14 ns

tobs = 1274ns

noise counts

tobs = 14ns

1u

10p

100p 1m 10m

ISOURCE(A)
DR1274ns = 9.21bits

| DR14ns = 12.84bits |ty

Eva Vilella Figueras — Berkeley Lab —January 28, 2014

T
100m

With short t . >
extension of the
dynamic range !!!
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Time-gated GAPD pixel array. Characterization.

* 2D .imaging

Laser »> VCSEL

GAPD array Laser DCP
. “'°'°'°°s"""°' V=1V “1on=22NS 4 21274 ns - 0.085 nc/frame
e mens \ LI’::;T:,‘,‘;“ -t,p=1274 ns > 34 ns t.,<=34ns - 0.0023 nc/frame
» . - to=1 ps

Reduction of the counter
occupancy !!!

: - Nyep=10 Mframes

| tes=1274ns
S T -t
5 e tnhsz -l
© t
- CLEDY B O
"
:
L4 .
3 : Light
a ;
b oA
3 ’ emission
@ bt o Phoorncs 35/57
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Time-gated GAPD pixel array. Characterization.

e Thermal effects

- Measured in a climatic chamber within the range -20 °C<T<60 °C

- Vgp drops with T = dVgp/dT | 4,,4=20 mV/°C (weaker ionization coefficients)
- DCR rises with T = roughly multiplied by two every 10 °C (higher SRH generation)
- Afterpulsing (NCR) rises at low T starting at 0 °C (longer trapping lifetimes)

Cumulative plot (NCR) Average value (NCR, DCR)

100M E 1 " 1 L l L 1 1 1 1 1 L 1 L | L l 1 | 1 3 10M , L N 1 N 1 1 N 1 | 1 | 1 | 1 N 1 . 1°M

] Te60°C E NCR(1V, 60 °C)=630 kHz {

,,,,,,,, T=4D °C hot pixels{ ] NCR(1V, -20 °C)=132 kHz |

T=20°C 110 Lo '

10M T=0°C UE - 1M

i ——T1=-20°c] softerslopeatT ] i
= (NCR deviation ) = — | _
E N t =1 N
VRLE T 100k - off~+ M5 L 100k T
o E [ E E 14
Z o 3]
z ——V, =2V -cont. o

00k e s T 10k O= Vg, =1 V-contf | 4o
1“7 ] —o—V_=2V-tg. E
NCR T atlow T ] DCR(1V,60°C)=350kHz | o v =1v-tg.
(afterpulses) 1 DCR(1 V, -20 °C)=9.8 kHz
10k T 1 ~ 1T * T * T * T 17 "~ T * 1T " T ™1 1k — T T T T T T " T " T " T " T * 1 1k
0 10 20 30 40 50 60 70 80 90 100 -20 -10 0 10 20 30 40 50 60
Percentage of pixels (%) T (°C)
- NCR - dc + afterpulses + xt - DCR - dc + xt (minimum t_=200 ns)
V=1V, 2V

-Vg=1V
-t,,=14 ms, t =0 s (continuous mode)

4 . Department
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9 Universitat de Barcelona

- tops=14 ns, tog=1 us, n.,=1 Mframes, t, =14 ms
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Time-gated GAPD pixel array. Characterization.

e Thermal effects

- Measured in a climatic chamber within the range -20 °C<T<60 °C

- Vgp drops with T = dVgp/dT | 4,,4=20 mV/°C (weaker ionization coefficients)
- DCR rises with T = roughly multiplied by two every 10 °C (higher SRH generation)
- Afterpulsing (NCR) rises at low T starting at 0 °C (longer trapping lifetimes)

Average value (NCR, DCR)

10M 4 1 L 1 L 1 L 1 L 1 1 1 1 1 I 1 L 1 - 10M
T | Noise rate Expected noise counts NCR(1V, 60 °°C)=630 kHz
(°C) (kHz) 1 NCR(1V, -20 °C)=132 kHz |
ILC (2820 BX, 337 ns) CLIC (312BX,0.5ns) | {not,, !
1nc/1.5 ps M_ "_____‘/*/. ?1M
630 (NCR) ] [
60 598 nc/GAPD/train 0.1 nc/GAPD/train A
103 nc/GAPD/BX (t,,,=10 ns) > o Pk L 100k i
350 (DCR) 10 nc/GAPD/BX (t.,,=1 ns) 102 nc/GAPD/train E E 5
1 nc/7.5 ps °
132 (NCR)
125 nc/GAPD/train 0.02 nc/GAPD/train Pk5 - 10k
-20 3 —o—V =2V-tg. :
10" nc/GAPD/BX (t,,.=10 ns) 3 . 1 DCR(1V, 60 °C)=350 kHz —0—V_=1V-tg.
9.8 (DCR) 10° nc/GAPD/BX (t,,=1 ns) 103 nc/GAPD/train 1 DCR(1 v, 20 °C) 98 ks ov
k . . . . . 1k
20 0 0 10 20 30 40 50 60
T (°C)
-NCR = dc + afterpulses + xt Better conditions for low noise
-DCR - dc + xt - a nanosecond time-gating scale

E. Vilella et al., BITE, 2013. - low working temperature
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Time-gated GAPD pixel array. Characterization.

e Radiation effects

- A few publications in the literature with irradiated GAPDs in the 0.35 um HV-AMS technology
- Publication with y rays and protons (fluence 8.3-:107 p/cm2/s, flux of 11 MeV, dose of 40 krad)

- In ILC/CLIC presence of e*-e” pairs and neutrons
-ILC - 1 kGy/year (TID) + 10! n,, /cm?/year (NIEL) (x 10 years of operation)
- CLIC - 200 Gy/year (TID) + 10'° n., /cm?/year (NIEL) (x 10 years of operation)

- According to the publication: 1200 S
-ILC - DCR(10 kGy=1 Mrad, y ray) increased by a factor 3-4 1 ooy Eveldion_ |
DCR(1V, -20 °C)=9.8 kHz - 36.45 kHz B
DCP(1V, -20 °C)=10"* - 3-10* | oo
(long t,g readout after each BX) Tl ] ILC _
- CLIC > DCR(2 kGy=200 krad, y ray) increased by a factor 2 £ g f==============S-mmmmaa————- g
DCR(L V, -20 °C)=9.8 kHz - 19.6 kHz g .
DCP(1V, -20 °C)=107 > 3:10°3 0 cLc __f"J 1
(long t,, readout after each train) i —— ]
B S - SN § LLL : :-
I ]
1k 10k Dose (rad 100k m

L. Carrara et al., IEEE Intl. Solid-State
Circuits Conference, 2009.
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Time-gated GAPD pixel array. Characterization.

° Power consumption

- Ps is due to non-idealitites - P¢;=0 W in HV-AMS 0.35 pm
- Py is due to a change of state > Py= C,-Vpp>-f
- Py is caused by the readout circuits and the output pads of the chip

P(DCR), the DCR indicates the frequency of operation GAPD array biased at V,,
- tops=4 NS, to=1 ps, ., =100 Mframes (t,,=0.4 s)

190 —

180 - L 2 ¢

— 170

% ]

- & 22
160 P

5 ] / ./V

% 150 - /’ A

52 1 @

S 0] 1 Voy=1.2V

g l0—> P=137 mW

2 1304 ? Num. transitions=DCR-t,;'n,,,*430

& ] * =4.52- 108 TTTUTTTTTTTITTTTTTd
o V=08V AVo=0.2V/step Vg=2.2V P,=0 W

0 0 20, OM 40, OM 60, OM 80, OM 100,0M 120,0M

DCR (Hz)

- Pp,p2d=295 pW/MHz (datasheet foundry)

- Py .,=8 UW/MHz (calculated), 10 uW/HMz (simulated)
P = DCR " typs " Npep * 430 - (Pp o p D,cir
D,measured obs__rep (Bo,cire + Pp,paa) - Poromad(1.2 V)=4 mW (circuits) + 133 mW (pads) - LVDS pad
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Time-gated GAPD pixel array. Characterization.

° Power consumption

- Ps is due to non-idealitites - P¢;=0 W in HV-AMS 0.35 pm
- Py is due to a change of state > Py= C,-Vpp>-f
- Py is caused by the readout circuits and the output pads of the chip

P(DCR), the DCR indicates the frequency of operation GAPD array biased at V,,
- tops=4 NS, to=1 ps, ., =100 Mframes (t,,=0.4 s)

190
180 * L
— 170 1
z
= P 4 272
160 H
5 _ / ’/V
g' 150 /’ A
52 1 @
g 1404 Vo=1.2V
g l’—P P=137 mW
2 130+ ? Num. transitions=DCR-t,'n,,,*430
o 1 * =4.52- 108 Y Y vy vYvYyYeYyvyYvyVyYyTYVYYVYTYY Yy YvVVvYyYVYYY
120
o V=08V AV, =0.2V/step V=22V Po=Ppcirc*Pp,pad (‘0" > ‘1" for 1 column)
o 0 20, OM 40, DM 60, om 80, om 100,0M 120,0M

DCR (Hz)

- Pp,p2d=295 pW/MHz (datasheet foundry)

- Py .,=8 UW/MHz (calculated), 10 uW/MHz (simulated)
P = DCR " typs " Npep * 430 - (Pp o p D,cir
D,measured obs__rep (Bo,cire + Pp,paa) - Poromad(1.2 V)=4 mW (circuits) + 133 mW (pads) - LVDS pad
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Time-gated GAPD pixel array. Characterization.

° Power consumption

- Ps is due to non-idealitites - P¢;=0 W in HV-AMS 0.35 pm

- Py is due to a change of state - Py= C,-Vpp>-f

- Py is caused by the readout circuits and the output pads of the chip

P(DCR), the DCR indicates the frequency of operation

GAPD array biased at V,,,

- tops=4 NS, to=1 ps, ., =100 Mframes (t,,=0.4 s)

190 —
180 4 &
— 170 1
2 ]
= & 2?
160 !
S S
g' 150 /’ A
52 1 @
S 0] 1 Voy=1.2V
g l0—> P=137 mW
% 1304 @ Num. transitionszDCR-tobS-n,ep-430
S 14 ~4.52- 108
120 *
110 ] OV-O 8 V | AVOV—O 2 V/step . \{0V=g.2\{
0 0 20, OM 40, OM 60, OM 80, OM 100,0M 120,0M

DCR (Hz)

PD,measured ~ DCR - tops - Npep - 430 - (PD,circ + PD,pad)

T Department
=l UmEml  of Electronics
Umversnat de Barcelona

Yy VY Y Y Y Y YY Y Y Y Y Yy vYyvyvyvyvyyy

PD=PD,circ+PD,pad (:0: - 1 forl column)

- Pp,p2d=295 pW/MHz (datasheet foundry)
- Pp,c=8 MW/MHz (calculated), 10 uW/MHz (simulated)
- Ppromac(1.2 V)=4 mW (circuits) + 133 mW (pads) -> LVDS pad
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Time-gated GAPD pixel array. Characterization.

° Power consumption

- Ps is due to non-idealitites - P¢;=0 W in HV-AMS 0.35 pm
- Py is due to a change of state > Py= C,-Vpp>-f
- Py is caused by the readout circuits and the output pads of the chip

P(DCR), the DCR indicates the frequency of operation GAPD array biased at V,,
- tops=4 NS, to=1 ps, ., =100 Mframes (t,,=0.4 s)

190 —

180 - * L
% 170—_
= 1604 2 4 2?
é 160 _ / ’/V
£ 150 /’ A
: 4
g 140 I‘ Vo=1.2V
ot l0—> P=137 mW
§ 130 - ? Num.transitionszDCR-tobS;n,ep-430

m_‘* =4.52- 10 RERZZZZ R 22 2R ZREZ R R A

110 c,\,-0 8 V . AVOV—O 2 V/step . \{0":-2'2\{ PD=PD,circ+%i (2’ > 1’ for 1 column)

0 0 20, OM 40, OM 60, OM 80, OM 100,0M 120,0M PD TOTAL
DCR (Hz) - Pp,p2d=295 pW/MHz (datasheet foundry)
- Py .,=8 UW/MHz (calculated), 10 uW/MHz (simulated)
p ~ DCR " tops " Nyep - 430 - (Pp ¢ p D.cir
D,measured obs__rep (Bo,cire + Pp,paa) - Poromad(1.2 V)=4 mW (circuits) + 133 mW (pads) - LVDS pad

42/57
Eva Vilella Figueras — Berkeley Lab —January 28, 2014

4 Department
== & UmEml  of Electronics
Umversnat de Barcelona



Time-gated GAPD pixel array. Characterization.

° Power consumption

- Ps is due to non-idealitites - P¢;=0 W in HV-AMS 0.35 pm

- Py is due to a change of state > Py= C,-Vpp>-f

- Py is caused by the readout circuits and the output pads of the chip

P(DCR), the DCR indicates the frequency of operation

GAPD array biased at V,,

- tops=4 NS, to=1 ps, ., =100 Mframes (t,,=0.4 s)

190 —

180 ¢ <
— 170 1
2 ]
= & 2?
160 f
S S
£ 150 /’ A
52 1 @
2.0l ® Vosl2v
g l0—> P=137 mW
% 1304 @ Num.transitionszDCR-tobS-n,ep-430
S 14 =4.52- 10°
120 *
110 ] OV-O 8 V | AVOV—O 2 V/step . \{OV:-Z'ZY
0, 0 20, OM 40, DM 60, OM 80, OM 100,0M 120,0M
DCR (Hz)

PD,measured ~ DCR - tops - Npep - 430 - (PD,circ + PD,pad)

. = Department
~~~~~ UmEml  of Electronics
Umversnat de Barcelona

P5=Ppcirc T + Pppaa T (Mmore dc -> more transitions)
Pprora. T

- Pp,p2d=295 pW/MHz (datasheet foundry)
- Pp,c=8 MW/MHz (calculated), 10 uW/MHz (simulated)
- Ppromai(1.2 V)=4 mW (circuits) + 133 mW (pads) -> LVDS pad
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Time-gated GAPD pixel array. Characterization.

° Power consumption

- Ps is due to non-idealitites - P¢;=0 W in HV-AMS 0.35 pm

- Py is due to a change of state > Py= C,-Vpp>-f
- Py is caused by the readout circuits and the output pads of the chip

P(DCR), the DCR indicates the frequency of operation

GAPD array biased at V,, ™1

-tops=4 ns, t¢=1 us, n
190

rep=100 Mframes (t,=0.4 s)

180 ¢ <
— 170 1
2 ]
p & 27
160 — f
S S
£ 150 /’ A
2 1 @
2.0l ® Vosl2v
g l0—> P=137 mW
% 1304 @ Num. transitionszDCR-tobS-n,ep-430
1 4 =4.52- 108
120 *
110 ] OV-O 8 V | AVOV—O 2 V/step . \{OV:-Z'ZY
0, O 20, OM 40, OM 60, OM 80, OM 100,0M 120,0M
DCR (Hz)

PD,measured ~ DCR - tgps -

Npep - 430 - (PD,circ + PD,pad)

. = Department
bl =l of Electronics
Umversnat de Barcelona

P5=Ppcirc T + Pp pag T4 (more dc - more transitions)

PD,TOTAL ™~
- Pp,p2d=295 pW/MHz (datasheet foundry)
- Pp ;=8 WW/MHz (calculated), 10 uW/MHz (simulated)
- Ppromac(1.2 V)=4 mW (circuits) + 133 mW (pads) - LVDS pad
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Time-gated GAPD pixel array. Characterization.

° Power consumption

- Ps is due to non-idealitites - P¢;=0 W in HV-AMS 0.35 pm

- Py is due to a change of state - Py= C,-Vpp>-f
- Py is caused by the readout circuits and the output pads of the chip

P(DCR), the DCR indicates the frequency of operation

GAPD array biased at V,, ™M M1

-tops=4 ns, t¢=1 us, n
190

rep=100 Mframes (t,=0.4 s)

180
— 170 1
=
E
5 160—- /V
g' 150 /‘
2 {1 ¢ B
S i 1 Vou=1.2V
o ,0—> P=137 mW
% 1304 @ Num. transitionszDCR-tobS-nrep-430
S 14 =4.52- 10°
120 *
110 ] OV—O 8 V | AVOV—O 2 V/step . Yov=?-2Y
0, O 20, OM 40, OM 60, OM 80, OM 100,0M 120,0M
DCR (Hz)

PD,measured ~ DCR - tgps -

Npep - 430 - (PD,circ + PD,pad)

. = Department
~~~~~ EE=EE  of Electronics
Umversnat de Barcelona

Po=Pp,circ T + Pp pag ¥ b (more dc > less transitions)

PD,TOTAL 24
- Pp,p2d=295 pW/MHz (datasheet foundry)
- Pp ;=8 WW/MHz (calculated), 10 uW/MHz (simulated)
- Ppromac(1.2 V)=4 mW (circuits) + 133 mW (pads) - LVDS pad
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Time-gated GAPD pixel array. Characterization.

* Series of beam-tests at CERN with a 120 GeV pion beam

The mechanics EUDET/AIDA beam telescope

aluminum layers

——FPGAs —
DUT

back arm

Schottky
detector

FGPA (ALTERA Cyclone IV)

DUT
control

$

N = Department
@ SEEEE]  of Electronics
9 Universitat de Barcelona

eAe IR
»

> . I | rav) E 'L
(W o @
. - i

Special features to
avoid multiscattering:

EUTelescope

E. Vilella et al., A test beam set-up for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking, NIM A 694, 2012.

Eva Vilella Figueras — Berkeley Lab —January 28, 2014

* Wafer of 250 um
* No chip package
* PCB drilled under chip
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Time-gated GAPD pixel array. Characterization.

* Series of beam-tests at CERN with a 120 GeV pion beam

GAPD array
- VOV=1'2 V
- tops=30 ns
- tOff=1'75 uS

Alignment xx Dut1 Tel Alignment yy Dut1 Tel

il B u g B 0 il

m 1" 1..r.
Ll

Correlation between the GAPD detector
array and the EUDET/AIDA beam telescope

J. Trenado et al., IX Jornadas sobre la participacidn espafiola en futuros
aceleradores lineales, 2012.
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Time-gated GAPD array in a 3D process. Design.

A 100% FF is required by ILC/CLIC on detector systems

GAPD detectors present dead areas due to
* Guard-ring to prevent the premature edge breakdown
* Additional masks to block the STI (technologies <0.250 um)
* Monolithically integrated readout circuit

cathode anode cathode

contact poly / contacts (vs)\ poly contact substrate
(Vsn"'Vov) achve area j (Veo*+Vov) [lj contact
i

multlpllcatlon region

n-well

., n-well p-
cathode

-well -well
P Y ) L cathode |sub.

guard ring 1 guard ring
n-well
cathode

p-well
guard ring

deep n-well

Non-active area
(2.24pm)

|
|
|

As a result, GAPD detectors present a low FF (<10% in many cases!!)
Time-gated GAPD pixel array (0.35 um HV-AMS CMOS) = FF = 67%

* Reduced number of in-pixel transistors

* Sensors placed in the same n-well (minimum separation between pixels of 1.7 um)
3D-IC technologies (Global Foundries 130 nm/Tezzaron 3D) are explored as a solution to
overcome this limitation

. > Department
bl =l of Electronics
Unlver51tat de Barcelona
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Time-gated GAPD array in a 3D process. Design.

* 3D vertical integration: * Main features of our design:
- Fabricated by Global Foundries 130 nm and - 48 rows x 48 columns
vertically integrated by Tezzaron - 2-different sub-detectors with the same pixel
- 2-layer stack of logic dies (no-DRAM option) (different sensor area) but different implementations
- The 2 dies are bonded face-to-face (the designs need - Sub-detector # 1 (48 rows x 24 columns, FF=66%)
to be mirrored) - Sub-detector # 2 (48 rows x 24 columns, FF=92%)
- 1/0 pads are on the back side of WTOP - Total area of 1770 um x 1770 um

- Via-first TSVs for connection between the logic
circuitry and the 1/0 pads
- Recommended TSV pitch = 100 um (dummy TSVs)

1770pm

sub-detector # 1

Tungsten
..... sub-detector # 2

WTOP (12 pm thick) BOTTOM (750 um thick)
I ® e ST 50/57
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Time-gated GAPD array in a 3D process. Design.

* Sub-detector # 1:

- Cluster of 1 pixel. For each cluster:

- WBOTTOM (T1) - readout electronics

- WTOP (T2) - sensors (18 um x 18 um)
- Interconnection between layers = from each GAPD to its readout circuit
- FF=66%

Figure legend:
Readout electronics
Remaining GAPD active area of 1 GAPD
dead areas

HEEENE% -
GAPD non-
active area

(guard ring
A
Layout zoom

o L I
N IEEEEE
WTOP (T2) WBOTTOM (T1)

4 . Department
I m EEEFE]  of Electronics / 51/57
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Time-gated GAPD array in a 3D process. Design.

* Sub-detector # 2:

- Cluster of 4 pixels. For each cluster:

- WBOTTOM (T1) = 1 sensor (30 um x 30 pum)

- WTOP (T2) - 3 sensors (18 um x 18 um) and readout electronics of the 4 pixels
- Interconnection between layers - from the 30 um x 30 um to its readout electronics
- FF=92%

I + I
L
Sensors &
readout elec. . I |

Figure legend:
Remaining Readout electronics
dead areas GAPD active area of 4 GAPDs

GAPD non-

active area

(guard ring
& poly)

Layout zoom

™
(WBOTTOM)

l
Sensors only &

WTOP (T2) WBOTTOM (T1)
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Time-gated GAPD array in a 3D process. Design.

Vin=Veo+Voy+GNDA Voo

0
b—<a%

3

to output
column line

=
5
£

D Vourta

CLK2,

0.15ns 0ns 0.15ns 0ns
—p——>

Pixel schematic

- GAPD + active INH and RST + 2G approach readout circuit
- inverter with V,=Vp/2, Vpp=1.2V
- low Vy, to reduce the DCR
- dynamic latch (1-bit memory cell) controlled by CLK1
to reduce the DCP
- transmission-gate for sequential readout
- digital output

- At (from Vg to V urcy) = 0.30 ns

. = Department
----- =l of Electronics
Umversnat de Barcelona

GAPD design in a 130 nm process

- p* anode in an n-well cathode

- Surrounded by a low-doped p-well guard ring

- Deep n-well for full isolation with the p-substrate

- Polysilicon gate around the p* anode to avoid contact
between the STl and the multiplication region for an
acceptable DCR

- The separation between two consecutive GAPDs is filled
with n-well (minimum separation = 2.24 um)

- Based on C. Niclass et al., IEEE J. Sel. Top. Quantum
Electron., 2007

non-sensitive area sensitive area non-sensitive area

polysilicon gate
to avoid the STI

substrate cathode anode

contact \ contact contacts
/ sensitive area\

cathode substrate

/ contac:/ contact

[ '_+'| T ——
P multiplication
region
n-well | p n-well cathode p | n-well

deep n-well

p-substrate Global Foundries 130 nm

53/57
Eva Vilella Figueras — Berkeley Lab —January 28, 2014



Time-gated GAPD array in a 3D process. Design.

* Chip:
- Pixel control signals:
- INH, RST (time-gated sensor)

3D-IC 48 x 48 GAPD array

RST £
- CLK1 (time-gated readout circuit) T 4
- CLK2,, (readout) CLK1 v
- Readout: INH &

- Sequential by rows during gated-off periods

- Sequentially activating CLK2,,, with m=[1,48]

- CLK2,, = 1input pin + 1 decoder (SEL) with
48 outputs

\"‘*-\

CLK2 g—v-—

Decoder
[ X N ]

- Pads:
- 6 output pads + 5 control signal pads (RST,

ri

INH, CLK1, CLK2) + SEL + WrEn + EnOut + SEL #—7 \ '

power supply pads ) 6 o
- 6 8-bit shift-registers 8-bit * PR

shift register
TTTTTITT = = = TTTTTTT]
- At to read the whole detector = 400 ns i
WrEn EnOQut Data output [47:40] [ ] )(.6 [ ] Data output [7:0]

* The detector has not been submitted for fabrication due to the delays in the MPW runs of this
technology

E. Vilella et al., 3D integration of Geiger-mode avalanche photodiodes aimed to very high fill-factor pixels for future linear colliders”, NIM A 731, 2013.
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Summary

Category Required Achieved by GAPDs Possible improvement
Opoint <5 um 5.77 um _
(pixel size) (17 pm) (20 pm)
0,
Material budget 0.15% X, (ILD) 0.25% X, -

0.30% X, (SiD)

Granularity High
Timing Single BX resolution
<1 %,
the noise counts (nc)
Occupancy

generated by GAPDs should be
below the background hits (bh)

TID=1 kGy/year,
NIEL=10"! n.,/cm?/year (ILC)
TID=200 Gy/year,
NIEL=10° n.,/cm?/year (CLIC)

Radiation tolerance

Power <a few mW/cm?
Fill-factor 100%
EMI Immunity
Cost Affordable

20 pm x 100 um

Single BX resolution (ILC)
Time integration (CLIC)

9-107 bh/GAPD/BX (L2, FTD),
106 nc/GAPD/BX (ILC)
6-10° bh/GAPD/train,

1,5-10°3 nc/GAPD/train (CLIC)

9-10”7 bh/GAPD/BX (L2, FTD),

4-106 nc/GAPD/BX (ILC)
6-10° bh/GAPD/train,
3-10°3 nc/GAPD/train (CLIC)
High
67% (90%)

Yes

Yes (MPW runs)

Time stamping (CLIC)

2-input logic AND

2-input logic AND
LVDS pad
3D technologies (to =100%)

Department
of Electronics

9 Universitat de Barcelona
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Conclusion

* To complement the discoveries made at LHC, a future linear lepton collider (ILC/CLIC) will be built
*  Future linear colliders impose very extreme requirements on detector systems

* A prototype GAPD pixel detector aimed mostly at particle tracking at future linear colliders has been
developed

* The two most ambitious requirements are the occupancy and the fill-factor:

*  Occupancy -> GAPD detector operated in a time-gated mode and at low V,
* Design and characterization of 2 chips in a standard CMOS technology (0.35 um HV-AMS)
*  APDs chip (Run 3) = Pixel array prototype with 10 x 43 pixels (67% FF)
e Characterization -

* reduction of the DCP (time-gated operation + low V,, + low T)
* avoidance of afterpulses

* reduction of crosstalk

* sensitivity to MIPs at beam-test

* sensitivity to photons (400 nm - 1000 nm)

» Fill-factor - 3D technologies (vertical stacking of two layers of logic dies)
* 3D APDs chip - Design of a GAPD prototype with a FF=92%

57/57
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HEP experiments. The present.

LHC (Large Hadron Collider)

*  Synchrotron hadron-hadron collider
* 27 km ring buried underground

*  Two beams of hadrons are accelerated in opposite directions
* Energy > 7 TeV per beam (maximum)
* The two beams are made to collide at the detector area (ATLAS, CMS, ALICE and LHCb)
*  Luminosity = 1-:1034 cm2s’?
* Main discovery = Existence confirmation of the Higgs boson (2012)

Universitat de Barcelona

Department
U=l of Electronics

7x102 eV Beam Energy
10* cm?s®  Luminosity
2835 Bunches/Beam
10" Protons/Bunch

7 TeV Proton Proton

Bunch Crossing 410" Hz colliding beams

Proton Collisions  10°Hz
Parton Collisions

New Particle Production 105 Hz
(Higgs, SUSY, ....)
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HEP experiments. The future.

* Need to study the new particle in great detail

- : p \ P
e Th t ble at LHC
is is not possible a )8 — 8 &

* Hadron-hadron collision (non-fundamental particles) \
* Broadband initial state

e Post-LHC era

* Lepton collider

* Electron-positron collision (fundamental particles)
* The energy of each particle is known - Precision measurements are possible

* Acircular positron-electron collider is not an option

* Energy losses due to synchrotron radiation - AEgy,[GeV] = Tadius [om] (
* Implies high energy compensations (not feasible)
* Orseverly increasing the radius of the ring (not feasible either)

E[Gev] \*
mO[GeV/CZ])

Next accelerator - Linear positron-electron collider

4 . Department
m EEEFE]  of Electronics
9 Universitat de Barcelona
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HEP experiments. Detector systems in ILC/CLIC.

* Detectors - To reconstruct the events generated right after the collisions

*  Two validated detector proposals -
(adopted by ILC and CLIC)

* General purpose detector:

* To measure at several points the position of the particles generated, their momentum and

energy
B et
\ * * .‘E.:" 2 -;-;l
“_".‘..lllll-“'
C sl jass
-_‘“‘.- .\‘. - '/ . '
Tracking Calorimeters  Muon tracking Disks to track down to small angles
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HEP experiments. Detector systems in ILC/CLIC.

* Detectors - To reconstruct the events generated right after the collisions

* Two validated detector proposals =
(adopted by ILC and CLIC)

* Subdetector arrangement (SiD):

Tracker detector

Vertex detector

- Barrel layers (5)

- Disks (4)

- Si strips [SiD]

- TPC + Si strips + Si pixels [ILD]

- To measure track curvature
of charged particles and
obtain their momentum

- Multilayer barrel section (5

- FW and BW disks (4)

- Disks (3)

- Si pixels

- To measure space points
where particles are
produced

Hadronic calorimetry

- RPC steel

Electromagnetic calorimetry

- Si pixels =W
- To measure particles - To measure particles
ener e . ener
&Y GAPDs aimed at the-forward region of &y

Solenoid — Magnet system the vertex tracker detector Muon system — To identify
(5T) isolated muons

@ bt o Frarmcs 62/57
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HEP experiments. Future linear lepton colliders.

NZ

*  Luminosi L=ny-fp-—H Beam parameter ILC CLIC
u osity - N * Trep 40,0, D P
Energy (TeV 1 3
* Hp (enhancement factor) - Beamstrahlung gy (Tev)
process L = Luminosity (-103% cm2s1) 2.70 5.90
Background hits n, - # Bunches/train 2820 312
(unwanted) ———— Z,'
f,, > Train repetition rate (Hz) 5 50
cﬁgﬁ\ (Y
X
e beam 9 Bunch separation (ns) 337 0.5
Mutual beam-beam
""""""""""""""""""""" interaction N2 - # Particles/bunch (-10°) 7.50 3.72
= & ox/oy-> Beam size (nm/nm) 640/5.7 40/1
0\0(\ +
L o e beam bunch train inter-train period
(~1 ms ILC) (199 ms ILC)
(156 ns CLIC) (~20 ms CLIC)

B a "
e r

e ILC/CLIC beam structure >
(drives timing requirements
for detectors)

X 2820 BX (ILC)
x 312 BX (CLIC)

—

14— BX=337 ns (ILC)
: 0.5 ns (CLIC)
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HEP experiments. Pair induced background hits in the subdetectors.

I3-
(5]

. Department
UEEEEEL  of Electronics

Universitat de Barcelona

Technical Design Report, Volume 4 — Detectors (p. 282)

Sub-detector  Units Layer 500 GeV 1000 Gev
VTX-DL hits/cm* /BX 1 6320 + 1.763  11.774 + 0.992
2 4009 + 1.176 7.479 + 0.747
3 0.250 + 0.109 0.431 + 0.128
4 0.212 + 0.094 0.260 + 0.108
5 0.048 + 0.031 0.091 + 0.044
3 0.041 + 0.026 0.082 £ 0.042
SIT hits/cm? /BX 1 0.0009 + 0.0013 0.0016 + 0.0016
2 0.0002 + 0.0003 0.0004 + 0.0005
FTD hits/em” /BX 1 0.072 + 0.024 0.145 + 0.024
2 0.046 + 0.017 0.102 £ 0.016
3 0.025 + 0.000 0.070 = 0.009
4 0.016 + 0.005 0.046 + 0.007
5 0.011 + 0.004 0.034 + 0.005
6 0.007 + 0.004 0.024 + 0.006
7 0.006 + 0.003 0.022 + 0.006
SET hits/BX 1 0.196 + 0.924 0.588 + 2 406
2 0.239 + 1.036 0.670 + 2 616
TPC hits,/BX - 216 + 302 465 + 356
ECAL hits/BX - 444 + 118 1487 + 166
HCAL hits/BX - 18049 + 720 54507 + 023
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Goetzberger, 1963; Cova,1981; Kindt, 1994; custom
Rochas, 2002, CMOS 0.8; Niclass, 2007, CM0S 0.13;
Arbat, 2008, CMOS 0.35, Vilella 2009, CMOS 0.35

(0 K e

Eet”:°' _12%‘376(:“'\782 (1)9788' Lacaita, 1989, custom Finkelstein , 2006,CMOS 0.18; Hsu, 2009, CMOS 0.18;
ancherl, o Niclass, 2007, CMOS 0.13; Gersback, 2008, CMOS 0.13,
(©) I Arbat, 2008, CMOS 0.13

Buried N-well

Pauchard, 2000; custom
Rochas, 2001, CMOS 0.8

p-epi substrate

Richardson, 2009, CMOS 0.13, Webster, 2012, CMOS 0.09

G.F.Dalla Betta, “Avalanches in Photodiodes” Ed., InTech Pub. (2011)

Rochas, 2003, CMOS 0.8; Xiao, 2007, CMOS 0.35

b - Department
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First steps in GAPDs at the University of Barcelona.

*  First steps in GAPDs at the Department of Electronics by Dr. A. Arbat (“Towards a forward tracker
detector based on Geiger mode avalanche photodiodes for future linear colliders”, PhD, 2010).

* Inthe thesis of Dr. Arbat, 2 standard CMOS technologies for GAPDs aimed to particle tracking are
explored:
* 130 nm STMicroelectronics
* 0.35 um High Voltage AustriaMicroSystems

*  Conclusion of Dr. Arbat’s work:

35.0k

—#— AMS R1 C2-C3-C4 20x20
—#— STM R1 C0-C1-C2-C4 20x20

30.0k -

0.35 um HV-AMS presents a lower
DCR due to its lower trap

25.0k -
22k + 4k

£ 200k concentration
E Tl
3 15.0k J
s 10.0k .
° This technology was selected to
5.0k Pt develop a GAPD detector for
Ll . ; — ; , particle tracking
0.0 0.1 0.2 0.3 0.4 0.5 0.6
V., (V)

* To continue the working line of Dr. Arbat, in E. Vilella’s thesis:
* Technology = 0.35 um High Voltage AustriaMicroSystems
* Sensor size - 20 um x 100 pm
* Sensor design = p*in an n-well (wafer is a p-substrate)

. > Department
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Single pixels with voltage-mode readout circuit. Design.

* Target - Voltage-mode readout circuit to operate the sensor at low V,, and reduce the DCR
* Problem - Difficult to detect low V,, with a small area readout circuit in HV-AMS 0.35 pm
* Decision - Design of 3 pixels with a different readout circuit that overcomes this issue

*  Allthe pixels consist of -1 voltage discriminator (with V,,=V,/2, Vpp=3.3 V)
- 1-bit memory cell (time-gated synchronously with the sensor)
- 1 pass-gate to activate the pixel readout

1-bit memory cell - Samples during gate-on and holds value during gate-off

Vv = Vigp + Vou + GNDA Vpp

= tobs = = tobs -
K Vov>Vin Viny Voo Voo Viaten Voo
avalanche T
M—p.,llo—G INH is
detected !!! Vss Vss
on off er‘ Voo Voo CLK1 Voo avalanche Ravalanche
R | ,‘IV | (detected) M4 M., (detected)
= Vss —_—
D Vour Vs D— E +—1 > Viarcn
My14 BLE
7L
CLK2 CLKA1
6V55
Latoh mods . GLKA<'0 A) 2-grounds (2G)
o ~ Latch mode — CLK1="0’ A) 2-grounds (2G)
x Readout — CLK2="1’ - Voltage discriminator - CMOS inverter with V,,=Vp/2
o VIGNDA  (during t.«)

- Vpp=3.3 Vin this technology
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Single pixels with voltage-mode readout circuit. Design.

* Target - Voltage-mode readout circuit to operate the sensor at low V,, and reduce the DCR
* Problem - Difficult to detect low V,, with a small area readout circuit in HV-AMS 0.35 pm
* Decision - Design of 3 pixels with a different readout circuit that overcomes this issue

*  Allthe pixels consist of -1 voltage discriminator (with V,,=V,/2, Vpp=3.3 V)
- 1-bit memory cell (time-gated synchronously with the sensor)
- 1 pass-gate to activate the pixel readout

* 1-bit memory cell - Samples during gate-on and holds value during gate-off

VHV = VBD + VOV “:I?_D
—b-tobs g
K Vov>Vin I Voy, 5 Voo
avalanche .;
o I
detected 11! Vss
ng VDD VDD ‘
on off
£ oo totecion
- Neap=1
= - D Vour +—1O Viarcn
5 Rblas MNG
3 |:
=g
é tnhs vs
Sample mode — CLK1="1" 5
4 L oLKi='0" B) Level-shifter (LS)
1> . . . . .
x H Readout — CLK2="1’ - Voltage discriminator -> CMOS inverter with V,,=V/2
© VVss (during tor) - Vpp=3.3 Vin this technology
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Single pixels with voltage-mode readout circuit. Design.

* Target - Voltage-mode readout circuit to operate the sensor at low V,, and reduce the DCR
* Problem - Difficult to detect low V,, with a small area readout circuit in HV-AMS 0.35 pm
* Decision - Design of 3 pixels with a different readout circuit that overcomes this issue

* All the pixels consist of -1 voltage discriminator (with Vi, = Vg 0sVgg<3.3 V)
- 1-bit memory cell (time-gated synchronously with the sensor)
- 1 pass-gate to activate the pixel readout

* 1-bit memory cell - Samples during gate-on and holds value during gate-off

Vv = Vgp + Voy ":D_D

_ Voo C) Track-and-latch
K Vov>Vgrer CLK Ll )
avalanche » comparator (TL)
I\Ello—(j INH is C D—Ci

detected !!!

VDD

on off
R e pe
- Neap=1 |
= - D Vour
Mn14

@
o

3 ,.EH €1 RsT cLK2
5 tnhs
o I |
Sample mode — CLK1="1"
o 1 Latch mode — CLK1="0"
= Readout — CLK2="1’
o V Vss (during te)
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Single pixels with voltage-mode readout circuit. Design.

* Target - Voltage-mode readout circuit to operate the sensor at low V,, and reduce the DCR
* Problem - Difficult to detect low V,, with a small area readout circuit in HV-AMS 0.35 pm
* Decision - Design of 3 pixels with a different readout circuit that overcomes this issue

* All the pixels consist of -1 voltage discriminator (with Vi, = Vg 0sVgg<3.3 V)
- 1-bit memory cell (time-gated synchronously with the sensor)
- 1 pass-gate to activate the pixel readout

* 1-bit memory cell - Samples during gate-on and holds value during gate-off

Vv = Vgp + Voy ":D_D

K

on off
B e Eam—
Neap=1

I |-

CLK-’O Voo C) Track-and-latch
Voy>V
av‘;‘iznéf; » comparator (TL)
mEllo—(j INH is C

detected !!!

| Vs H Meo Me1o F—G Vrer
D Vour

VDD

@
o

<

o

o

o - Latch mode — CLK1="0"
= Readout — CLK2="1’

o V Vss (during te)
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Time-gated GAPD pixel array. Characterization.

* Photoemission » Distribution of photon detection efficiency
- An emission microscope (PHEMOS 1000) was used to - Set-up to scan a region of the array with a pulsed LED
localize the high field regions by detecting the emitted - LED resolution - 2 um
light during the avalanche process -LEDA - 625 nm
- Presence of non-uniformities across the array and also - Shots per spot - 1 k
within single GAPDs -Voy=3.1V, t,, =50 ns, t =5 ms (LED moves to next
spot), Ne,=1k
Set-up Result
d Black box )

/_' \ Triggers LED
and t

le
- LED [«
scope | pulse generator

GAPD
+ FPGA

micropositioning
stage

LRI R Sa b i s s e s b W

The avalanches don’t
expand through the whole
sensitive area ;

Does it affect the . 1o
efficiency of the detector? ;

b
40000|llllllillllll

Sensitive
region

Y Y

F A S YT AP YPYYVYPYN NN

M. Tesar et al, Proc. Sci., 2012
71/57
Eva Vilella Figueras — Berkeley Lab —January 28, 2014

A . Department
@@% of Electronics

Universitat de Barcelona

Guard ring

detection efficiency (number of detected pulses)




Time-gated GAPD array in a 3D process. Design.

* Sequential readout by rows during the gated-off periods:

RST

| | | 3D-IC 48 x 48 GAPD array
RST +

CLK1
/

CLK1

| i
INH 7

INH

L1 1]
— [
CLK2 — 1]
@ — 0 X > - gl o
CLK2 @——| 8 * 1 1]
&l o
WrEn 1]
_.___IIIIIIIIIIIIIIIIIIIII
Enout SEL #—F—N | — O
nou e HEEEEEEEEEEEEEEEEEEEE|
- 47 [3) 1
x8 x8 x8 46 40 €
’ . 6
Clock Il " _B-bit PR
register ‘ | ’ shift register
UL -— TTT]IIT = = = TTITI11]
Data "ﬂ f f
output x6
- WrEn EnOut Data output [47:40] o0 e Data output [7:0]

Readout
protocol
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Alternative solutions.

* Vertically integrated detector with 0.35 um HV-AMS standard CMOS technology:

Cross-section

anode contacts (V)
/ active area

substrate contact
cathode contact
(Veo*Vov) \

— — — =
bt [ Pt ] n" Ip_'l
avalanche region I o P IIo(Vov avalanche region | P

n-well ——————— guardring —8™

Vs
(to readout) g

p-substrate

No STI !

—F
TOP BOTTOM
Sensors & Sensors &
readout elec. readout elec.

In this particular technology, and with our structure, the
guard ring is sensitive - = 100% fill-factor seems
feasible (*)

e 1770V
4.0 M e 17.80V
‘ﬂ ¥ 17.90V
35} == 18.00V
—_ 4 1810V
T30 < 1820V
< \ > 1830V
> 25 A e 1840V
g 20k | 1850V
g {
3
2 35
=
1.0
0.5

oL S3
5 10 15 20 25 30
Distance (um)

Fig. 16. Detection frequencies measured by scanning a 30 keV electron beam onto
two neighbouring pixels in the array.

—
TOP BOTTOM
Sensors Readout elec.

(*) A. Vila, Characterization and simulation of avalanche photodiodes for next-generation colliders, Sens. Actuators A (2011).
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Further improvements. Reduction of the threshold event in dSiPMs.

* The time-gated operation can be used to improve the performance of SiPMs

 SiPM:
Vbias (Ta=25 "C,\M=7,5 x 10%)
An array of GAPD 2B The output signal is
cells that are é . the sum of the
connected in parallel see g - individual currents of
(each cell has g 4 the fired cells
9

binary output) (analog output)

o

SiPM detector Time  (Hamamatsu)

* GAPD based nature + analog output = high pattern noise with typical values from 10° to 10% Hz/mm?
* The intensity of the impinging signal - by counting the number of cells fired
* High pattern noise = high threshold event - not possible to detect weak intensities

* Typical solutions:
* Work at cooled temperatures - pattern noise of 103 Hz/mm? at -20 °C (still high)
* Switch off those GAPD cells with an abnormal DCR (Philips) 2 FF {,

PDP

DR ¢

Another possible solution is the time-gated operation with short gated-on periods...
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Further improvements. Reduction of the threshold event in dSiPMs.

* Experimental set-up:

dSiPM
VVCEEL
Based on the 10 x 43 V=1V
. ov=
Routup time-gated GAPD array ~t,,,=200 ns > 3.2 s
—
7. conltrol - toff=1 1S
dSiPM ~ [ 7 uUsB dSiPM -105
N ‘ -n,,=10° frames
ASIC  |configuration FPGA controller control rep
M r
Vo w0 | —— > SE
output channels [42:0] _
i -Vyesg =5V 26V
- t.5er=100 ns (within t,,)
* Results: 2. With VCSEL -
1 . . 1
1. In darkness -> threshold event = - 129 noise counts.e, cells fired by signal = — 129 countsgy - threshold event
Tep Tep
80 T T T 1 T T T T T T T 1 100,0 35 T T T T T T T
= Q . ot =200ns
8 701 = 5 more fired cells 1978 3041 800 ns T
2 ] on =
€ 60 every 200 ns Joso _ 25 v ot =328 1= the same #
2 ] 3 E ] despitet,,
£ 504 4925 5 o 2,0 -
o g 4
g 40 00 = 3 151 below threshold .
3+ Y
‘E 30 ders £ R event |
] H 2
5 g 8 °
e 20 —850 & o 05 a _
[<] o
@ 104 1825 4 8_o 2 A :
§ _ 0,0 TV g a% c/ / The thteshold is lower
s, . . . . . . . B PP 05 (R S I NN /00 N S N for shorter t,
0,0 4000n 8000n 1,2p  16p 20p  24p 281 3.2p 25 26 27 28 29 30 Possibility to detect
t,. (s) optical power (MW) weaker intensities!
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Further improvements. Non-uniformity correction system.

* During the fabrication process, doping profile fluctuations and lattice defects are unavoidably introduced

Consequences
amongst the pixels
of a GAPD array

Also, GAPD pixels
presentanon- *™7 434 jivels
linear response  '*%]

16,0k

14,0k
———————————

12,0k |
10,0k |

8,0k 4

Pixel counts

6,0k 4

4,0k -

1
1
1
4 1

Y 4
2,0k 1
1 1

Noise counts

10 x 43 GAPD array

et -VgyElV

,’;: d - tops=10 Ns

o g -tyg=luys

j:? £ -n,=10 Mframes
, o

o Light source

R - 9 white LEDs
il o
g “’PDP fluctuations

# counts A Fspecially problematic

in vision systems:

0,0
0,00

Power (W)
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154 TP Ximax
L | - Same irradiance >
1 P different # counts
= across the pixels of
N // /r/ - Overlapped areas
y N - Levels of
# .4 representation (bits

// NN ~ of contrast) are lost
Vit T >
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Further improvements. Non-uniformity correction system.

* The problem can be reduced with correction techniques based on calibration algorithms (equation)

- With 1 eq. per pixel, linear correction:

High deviation ™
18,0k |
16,0k
14,0k
12,0k -
10,0k -

8,0k -

Pixel counts (pC)

Calibration ]

equation:

4,0k o

0k -

f—

Before correction

6% deviation
(3.8 bits)

c; = k- (pg —de) "%
pg — dg

' average value

(k, is at the max. ™

A 16,0k -
irradiance) 8
S 14,0k
12,0k -
10,0k -

8,0k

Corrected counts

6,0k

The response of/‘““

the pixels is
0,0

T T T T T T
0,00 25,00m 50,00m 75,00m 100,00m 125,00m 150,00m

Power (W)

After correction
(1 linear eq. per pixel)

1% deviation
(6.9 bits)

equalized!! "0,00
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Power (W)

- With 1 B-spline per

ixel, non-linear correction

GAPD array Webcam
- 4 calibration points

Optical-illumination

Object Micropositioner

1

~ g

Rlng of 9 white
LEDs + lens

- 256 interpolated pairs (representation levels)
- generated values saved in a LUT

- Results:
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