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Involvement in prototype chips. 
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- APDs chip (Run 2), HV-AMS 0.35 µm, April 2010 
- Several GAPD pixels with different readout circuits + small GAPD arrays 
- First GAPD pixels with digital output at the Univ. Barcelona 
- Spanish program for particle physics (FPA2008-05979-C04-02) 
- 9 conference papers + 8 journal papers 

- 3D APDs chip, Global Foundries 130 nm/Tezzaron 3D, not submitted 
- Large GAPD array 
- Explore a 3D technology (improve GAPD fill-factor) 
- AIDA project (Grant Agreement 262025) 
- 1 conference paper + 1 journal paper 

- Bandgap reference circuit, IBM 90 nm, March 2010 
- With enclosed layout transistors 
- Belongs to DHP 0.1, a readout chip for the DEPFET technology 
- Spanish program for particle physics (FPA2008-05979-C04-02) 
- 1 conference paper 

- APDs chip (Run 3), HV-AMS 0.35 µm, April 2011 
- Large GAPD array 
- Characterization in beam-tests at CERN 
- Spanish program for particle physics (FPA2010-21549-C04-01) 
- 4 conference papers + 3 journal papers (+ 2 submitted) 
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¾Outline 
 
 

1. Potential applications 
• Future linear lepton colliders 
• Detector systems in ILC/CLIC 

2. GAPDs in CMOS technologies 
• Principle of operation and figures of merit 
• State-of-the-art 
• Front-end electronics 

3. Large arrays in a HV-CMOS process 
• Design and characterization 

4. Large arrays in a 3D process 
• Design 

       Conclusion 
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Potential applications. 
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HEP experiments. Future linear lepton colliders. 
 
• Target  →  Study  in  great  detail  the  Higgs  boson  discovered  recently  at  CERN 
• How?  →  At  a  future  linear  positron-electron collider 

 

• Two alternative proposals underway: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
• Energy 
• Accelerating gradient 
• Luminosity 
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500 GeV (1 TeV upgrade) 
31.4 MeV/m (SCRF) 

2.70·1034 cm-2s-1 

500 GeV (3 TeV upgrade) 
100 MeV/m (2-beam acceleration scheme) 
5.90·1034 cm-2s-1 

Linacs 

Linacs 

Interaction Point 
(IP) 

Interaction Point 
(IP) 
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HEP experiments. Detector systems for ILC/CLIC. 
 
• Detectors  →  To  reconstruct  the  events  generated  right  after  the  collisions 

 
• Two  validated  detector  proposals  →   
 (adopted by ILC and CLIC) 

 

 
 

• Subdetector arrangement (ILD): 
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ILD SiD 

Vertex detector 
- Barrel 
- VTX (3 double Si pix layers) 
- To measure space points 
   where particles are produced  Hadronic calorimetry 

- HCAL (Fe absorber) 
- To measure particles 
   energy 

Muon system 
- To identify isolated muons 

Coil 
- Magnet system (3.5 T) GAPDs aimed at the forward region of 

the vertex tracker detector 

Tracker detector 

- Barrel 
- SIT + SET (2 + 2 Si strips) 
- TPC (MPGD readout) 
- End cap 
- FTD (2 Si pix + 5 Si strip disks) 
- ETD (2 Si trip layers) 
- To measure track curvature of 
   charged particles (momentum) 
 

Electromagnetic calorimetry 

- ECAL (W absorber) 
- To measure particles 
   energy 
 

GAPDs aimed at the forward region of 
the vertex tracker detector 
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HEP experiments. Tracking detector requirements. 
 
• The physics targets at ILC and CLIC impose very demanding requirements on tracking detectors: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

9/57 

Requirement Value Detector design 

σpoint <5 µm Pixel size <17 µm 

Material 
budget 

<0.15% X0 per layer (ILD) 
<0.30% X0 per layer (SiD) 
(↓  Coulomb  multiscatt.) 

<150 µm per layer (ILD) 
<300 µm per layer (SiD) 

+ no active cooling 

Granularity High High number of pixels 

Occupancy <1% 
(with background hits) 

High timing resolution: 
 
 
 
 

Radiation 
tolerance 

ILC →  1 kGy/year (TID) + 
1011 neq /cm2/year (NIEL) 
CLIC  →  200  Gy/year  (TID) 
+ 1010 neq /cm2/year (NIEL) 

Include 
mitigation  
techniques 

Power <a few mW/cm2 Low power 

+ EMI immunity and affordable cost 

- Single BX 
- Time-slicing (each 50 µs for a 
   25 µm x 25 µm sensor at ILC) 
- Time-stamping  

ILC/CLIC beam structure: 

Background hits 
(unwanted) 

Mutual beam-beam 
interaction 

Beamstrahlung process: 
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HEP experiments. Tracking technology options. 
 
• New CMOS pixel technologies are being developed in parallel with the accelerator: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
• Any of these technologies can be integrated in a 3D process 
• A  decision  on  the  tracker  detector  technology  has  not  been  made  yet… 
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Requirem./Detector DEPFET MAPS FPCCD Chrono. Timepix GAPD SOI 

σpoint (µm) ~1 ~3 – ~3 2.3 ~5 ~1 

Material budget (µm) 50 50 50 50-100 300 250 70 

Granularity (µm x µm) 20 x 20 18.4 x 18.4 5 x 5 10 x 10 55 x 55 20 x 100 13.75 x 
13.75 

Timing integration integration integration stamping stamping single BX integration 

Radiation tolerance 10 kGy 10 kGy 
1013 neq /cm2 1012 e–/cm2 – 

 4 Mgy – 
 1 kGy 

Power 5 W/detec. 250 
mW/cm2 

16 
mW/ch 

– 
 

886 
mW/cm2 

– 
 

– 
 

Fill-factor (%) 100 100 100 100 87 67 (90) 100 
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¾Outline 
 
 

2. GAPDs in CMOS technologies 
• Principle of operation and figures of merit 
• State-of-the-art 
• Front-end electronics 
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Principle of operation of GAPDs. 
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An avalanche photodiode is based on a p-n junction 

Impurity 
distribution 

Electric field 
distribution 

Potential 
variation 

If an external bias is applied 

Shockley eq. 
New carriers are 

generated by 
impact ionization 

(avalanche 
multiplication) 

e– and h+ 
(self-sustained) 

Linear APD 

- Not self-sustained 
- GainAPD≈impinging 
  radiation flux 
- To determine energy 

Macroscopic detectable 
current 

 
Geiger APD (GAPD) 

- GainGAPD≈105-106 
- Binary device 
- To detect single 
  photons and MIPs 
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Main figures of merit. Noise. 
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1. Dark counts (uncorrelated noise) 

(a) Thermal generation (SRH) 
(b) Trap assisted thermal/SRH generation 
(c) Band-to-band tunneling 
(d) Trap assisted tunneling 
- Measured as dark counts/s (Dark Count Rate) 
- Dependent on  - fabrication process (traps) 
     - sensor surface (area) 
     - reverse bias overvoltage (VOV) 
     - working T 
- Reduced by     - area  ↓, VOV ↓,  T ↓ 

2. Afterpulses (correlated noise) 

(e) e– (left) and h+ (hole) afterpulses 
- Dependent on  - trapping centers 
     - number of charge carriers 
- Reduced by     - CP (parasitic  capacitance)  ↓ 
     - active quenching 
     - dead time ↑ 

Primary carrier 
triggers avalanche 

(due to absorbed 
radiation or other 
phenomena  → 

noise) 

Sources of noise counts in GAPDs: 

1.12 eV 

e– 

h+ 
trap 

 

3. Crosstalk (correlated noise) 

(f) Electrical crosstalk 
- Dependent on  - pixel separation 
- Suppressed by  - using different wells 

(g) Optical crosstalk 
- Dependent on  - pixel separation 
- Reduced by     - limiting Geiger current 
     - using trenches 

(f) 

(g) 

primary 
avalanche 

n-well 

drift 

diffusion 

new 
avalanche 

recombination 
photons emitted due 

to 
electroluminiscence 

new 
avalanche 
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Main figures of merit. 
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Photon detection probability 

Time resolution 

Primary carrier 
triggers avalanche 

(due to absorbed 
radiation or other 
phenomena  → 

noise) 

 

  

- It ranges from 350 nm to 1000 nm in CMOS GAPDs 

 

  

- MIPs  →  80 e–-h+ per Si µm 
- Probability for a primary e–-h+ pair to trigger an 
   avalanche: 
 
 
 
 
 
 
- Pe(x) >> Ph(x) 
- Ptrigger(x) is maximum at the center of the junction 
   and decreases to 0 at -xp, xn 
- In 2, carriers may start an avalanche breakdown 
- In 1 and 3, carriers have to diffuse to 2 

ionization coefficients 

 

  

- Time delay between the arrival of radiation and the leading edge of the output pulse 
- Depends on sensor and readout electronics 
- Affected  by  fluctuations  (sensor  →  depth  and  position) 

[laser with 80-ps pulse width] 

D. Stoppa et al., IEEE Sens. J., 2009 

High energy particle detection: 

(1) (3) (2) 
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State-of-the-art. Custom vs CMOS GAPDs. 
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Custom GAPDs 

- Excellent detection and timing properties 
- Low DCR < 1 kHz (ultra-clean fabrication) 
- Low afterpulsing 
- Large area detectors are possible 
- Not suitable for integration of sensors + 
   readout electronics 

a. Reach-through b. Planar c. Double epitaxial 

McIntyre  (1970’s) Haitz  (1960’s) Cova  (1980’s) 

CMOS GAPDs 
d. HV-CMOS 

Rochas (2003) 

- Several different configurations 
   are possbible: 
- n+ on p-substrate, n-well as guard ring 
- p+-diff in deep n-well, low doped p as 
   guard ring 

- Possibility to integrate sensors + readout electronics on the same chip 
- Possibility to include advanced functions in the in-pixel electronics 
- Very good timing properties 
- Acceptable detection properties 
- Moderate DCR without STI (1 Hz/µm2 < DCR < 102 Hz/µm2) 
- High DCR with STI (DCR ≈  50  kHz/µm2) 
- Low fill-factor (< 10% in many cases) 
- Low cost 

guard ring guard ring 

PEB avoided by 
p+ and thinning 

guard ring 

Typical noise trend in CMOS GAPDs 
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Front-end electronics. Quenching and recharge circuits. 
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Passive quenching and recharge 

Active quenching and recharge 

- Quenching →  lower Vbias=VBD after an avalanche 
      - Resistive element in series with the sensor 
      - Resistor with 102 kΩ (area  ↑)  or  MOS  transistor 
         with proper (W/L) and bias 
      - τQ=(CD+CP)·RD 
- Recharge → increase Vbias>VBD after quenching 
      - Quenching element is used for recharge too 
      - τR=(CD+CP)·RQ 
      - Poor control over quenching and recharge times 
      - RQ ↑,  τQ ↓,  τR ↑  (and  vice  versa) 

- Quenching →  sense  the  rising  edge  of  the  
avalanche and react back on the sensor (Vbias<VBD) 
      - To minimize the number of generated carriers 
      - Difficult to implement 
      - Required circuits have to be faster than 102 ps 
- Recharge → full control over the recharge time 
      - MOS switch 
      - Possibility to introduce a hold-off time to 
         release  the  trapped  carriers  (afterpulsing  ↓) 

Readout circuit: 
- CMOS inverter 
- Voltage comparator 
- Source follower 

time 
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Front-end electronics. Sensor mode of operation. 
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Free running 
- The sensor is always ready to trigger an avalanche 

Time-gated mode 
- Valid for those applications where the signal time arrival can be known in advance (HEP experiments, 
   time-gated FLIM or gated-SPECT) 
- The sensor is periodically activated and deactivated under the command of a trigger signal 
-The active short periods (discretized measurements) can be made coincident with the expected signal 
   arrival 
- Reduces the detected dark counts, avoids afterpulses, reduces the detected crosstalks 
- Improves efficiency 
 

High freq. Vbias 
(sinusoidal, square) 

MOS switches 
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Front-end electronics. Array architecture. 
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Random access 
      (a) Sequential readout pixel-by-pixel 
      (b) Sequential readout by columns 
      - Simple implementation 
      - Low frame rates 
(c) Event-driven readout 
      - Pixels are read out asynchronously when an 
         event is generated 
      - The address (row) of the pixel is sent through 
         the output column 
      - Aimed to very low intensity applications 

(d) Latchless pipelined readout 
      - Each column is used as a time-preserving delay 
         line 
      - The delay time contains the information about 
         the position of the pixel 
      - The information can be reconstructed by a TDC 
         at the end of the column 

GAPD cameras are composed of a moderate or large number of pixels 
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Why Geiger-APDs for tracking? 
 
• A particle tracker is a yes/no application 
• It is not necessary to measure the energy of the particle 
• A binary device like a GAPD suits the application 

 
• Performance of GAPDs: 

• Virtually infinite gain of 105-106  
• High sensitivity (single-photon sensitivity) 
• Fast timing response (possibility of single BX in some future colliders) 

 
• Implementation: 

• Possible in CMOS technology  
• Simple design 
• Simple  readout  (it’s  a  binary  sensor) 

 
• Questions to answer: 

• Noise? Fits collider requirements? 
• Sensitivity of GAPDs in particle tracking? 
• Fill-factor? Need to cover >90% of the area 
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¾Outline 
 
 

3. Large arrays in a HV-CMOS process 
• Design and characterization 
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GAPD design in a 0.35 µm HV process 
 
 
 
 
 
 
 
 
 
 
- p+ diffusion on an n-well 
- p implantation as guard ring 
- Round shaped corners 
- Size  →  20  µm  (x)  x  100  µm  (y) 
- Based on A. Rochas et al., Rev. Sci. Instrum., 2003 

GAPD pixel array for particle detection. Design. 
 
• Target  →  Reduce  the  high  pattern  noise  typical  of  GAPDs 
• How?    →  Analysis  of  different  possible  solutions: 

• Dedicated  technologies  with  lower  doping  profiles  →  expensive  (in  favor  of  standard  CMOS)  / 
• Active  quenching  →  increase  of  area  occupation  +  reduction  of  afterpulses  only  / 
• Cooling  methods  with  air  cooling  →  ok,  but  not  main  idea  - 
• Time-gated  operation  →  ok  (fine  for  HEP  applications)  - 
• + operate at low VOV to reduce the DCR (fine for HEP applications) - 

22/57 

Time-gated GAPD pixel with low VOV 
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Time-gated GAPD pixel with low VOV. Design. 
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Time-gated photodiode 
- Long enough gate-off periods the suppress the 
   afterpulsing probability 
- Short gate-on periods to reduce the DC probability 
- Very short gate-on periods to eliminate the electrical 
   crosstalk probability 
 
- Cphotodiode = 540.19 fF at 1 V of VOV 
- CP = 15 fF 
 
 

Avalanches can 
happen !!! 

ΔtRST ~ a few ns 

2) Gate-on period. Observation (only). 

VOV= n·q/CP =IG·Δt/CP 

Avalanche 

Avalanches are 
not possible !!! 

3) Gate-off period. 

1) Gate-on period is started. Recharge and observation. 

VOV≤VDD 

E. Vilella et al., A gated single-photon avalanche diode array fabricated in a conventional CMOS process for triggered applications, Sens. Actuators A: Phys 186, 2012. 
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Time-gated GAPD pixel with low VOV. Design. 
 
• Target          →  Voltage-mode readout circuit to operate the sensor at low VOV and reduce the DCR + 
          with low area occupation 
• Problem  →  Difficult  to  implement  in  HV-AMS 0.35 µm 
• Example readout circuit      - 1 voltage discriminator (CMOS inverter with Vth=VDD/2, VDD =3.3 V) 
                                                              - 1-bit memory cell (time-gated synchronously with the sensor) 
                                                              - 1 pass gate to activate the pixel readout 
 

The generated 
avalanches are not 

detected… 
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Time-gated GAPD pixel with low VOV. Design. 
 
• Target          →  Voltage-mode readout circuit to operate the sensor at low VOV and reduce the DCR + 
          with low area occupation 
• Problem  →  Difficult  to  implement  in  HV-AMS 0.35 µm 
• Implemented readout circuit   - 1 voltage discriminator (CMOS inverter with Vth=VDD/2, VDD =3.3 V) 
                                                              - 1-bit memory cell (time-gated synchronously with the sensor) 
                                                              - 1 pass gate to activate the pixel readout 
       + 2-grounds scheme (GNDA, VSS) 

 

It possible to detect 
avalanches at low 

overvoltages (VOV< Vth). 
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Time-gated GAPD pixel array. Design. 
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Chip 
- Sequential readout by rows during gated-off periods 
- Sequentially activating CLK2m, with m=[1,10] 
- Each output column connected to output buffer and 
   output pad 
- No multipliexers nor selection decoders 
- 43 output pads + 13 control signal pads (RST, INH, CLK1 
   and the ten CLK2) + power supply pads 
- Δt (from VS to VLATCH) = 0.32 ns 
- Δt (from VLATCH to outside the chip) = 1.33 ns (0.12 ns of 
   CLK2m + 0.26 ns of output buffer + 0.95 of output pad) 

Features 
- Monolithically integrated with the 0.35 µm HV-AMS  
   standard CMOS technology 
- 10 rows x 43 columns 
- Total sensitive area of 1 mm2 (to facilitate particle  
   observation at beam-test) 
- Sensors placed in the same well to increase the fill-factor  
   (FF=67%) 
- Readout circuits placed between two consecutive rows of  
   sensors, pixel pitch = 22.9 µm x 138.1 µm 
- Radiation effects mitigation techniques and on-chip data  
   processing are not included 

E. Vilella et al., A low-noise time-gated single-photon detector in a HV-CMOS technology for triggered imaging, Sens. Actuators A: Phys 201, 2013. 
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Time-gated GAPD pixel array. Characterization. 
 
• Current-voltage curve (at room temperature) 

 
 
 
 
 
 
 

 
• Noise and signal 

IG=0.4 mA 

VBD=18.94 V 
4-wire 

method 

IG(VBD) 

Testing board 

voltage 
source 

• generate the control signals (tobs, toff, readout) 
• count off-chip the number of pulses per pixel 
• manage the communication with a PC 

• tobs, toff 
• num. repetitions (nrep) 

counts per pixel 
(data processing) 

ALTERA Cyclone IV 
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Single pixels with voltage-mode readout circuit. Characterization. 
 
• Afterpulsing probability (in darkness, room T) 

- tobs=12 ns, nrep=105  
- Measured at different toff 
 

- 

- Long enough gate-off periods suppress the 
   afterpulsing probability 

- DCR is  high;  DCR  ↓  as  VOV ↓ 

<1% at toff=200 ns 

11% at toff=50 ns, VOV=1 V 

22% at toff=50 ns, VOV=2 V 
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Time-gated GAPD pixel array. Characterization. 
 
• Dark count rate (in darkness, room T) 

 

29/57 

Cumulative plot 

- Cumulative  percent  of  pixels  ≤  a  certain  DCR 

2 orders of 
magnitude 

(dependence 
to defects) 

High DCR due to 
large sensor area 

  DCR (2 V, mean)=139 kHz 
DCR (1 V, mean)=67 kHz 

        Spatial map (VOV=1 V) 

  Hot pixels 

- VOV=1 V, 2 V (VBD=18.9 V) 
- tobs=1274 ns, toff=1 µs (for data transmission to PC) 
 

-                                         , no afterpulses but crosstalk 
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Time-gated GAPD pixel array. Characterization. 
 
• Electrical crosstalk 
• The GAPDs are placed in the same well to reduce the dead area and increase the fill-factor (FF=67%) 

 
 
 
 
 
 
 
 
 
 

• Presence of electrical crosstalk? 
• Maximum  concentration  per  avalanche  →  C=1·∙1013  holes/cm3 
• Concentration  to  trigger  a  new  avalanche  →  C’=1·105  holes/cm3 

• From Fick’s  1st  and  2nd  laws: 
• Δt=164  ps    →  C’ is at Δx = 3.90 µm 
• Δt=6.23  ns  →  C’ is at Δx = 22.90 µm 

• Electrical crosstalk should take place between 164 ps and 6.23 ns 
• Good agreement between theoretical and simulated results  
• Possibility to reduce the electrical crosstalk with tobs<6.23 ns? 

 
30/57 

Minimum 
separation Simulations with ISE-TCAD 

Δt=400 ps 
(maximum concentration) 

Δt=6 ns 
(highest concentration 

reaches neighboring GAPD) 

A. Vilà, E. Vilella et al.,  A crosstalk-free single photon avalanche photodiode located in a shared well, IEEE Electron. Device Lett. 35, 2014. 
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Time-gated GAPD pixel array. Characterization. 
 
• Characterization of the electrical crosstalk as a function of tobs 
• Set-up # 1: 

31/57 

- Electron beam 
- Beam energy = 1 keV 
- Beam size = 1 nm 

 
- PCB with chip + FPGA placed in the 
   vacuum chamber during the 
   measurements 
- Control and display system placed 
   outside the machine 
 
- VOV =2 V 
- tobs=100 ns (maximum crosstalk) 
- toff=1 µs (no afterpulses) 
- nrep=1·106 
 
- Problems related to the set-up: 
   Progressive oxide charging due to 
   electron beam (change of VBD) 
- Not possible to completely 
   characterize 

GAPD array 

PIX0 PIX1 PIX2 PIX3 PIX4 

Noise counts in the dark 0.36 k 7.15 k 0.54 k 5.40 k 4.21 k 

Net counts after beam - - - 0.15 k 6.70 k 

2.2%  →  Maximum  electrical  
crosstalk (1st neighbor) 

Negligible crosstalk 
(2nd neighbor and beyond) 

FIB-SEM machine 

vacuum 
chamber 
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Time-gated GAPD pixel array. Characterization. 
 
• Characterization of the electrical crosstalk as a function of tobs 
• Set-up # 2: 
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tobs 
(ns) 

tm 
(µs) 

PIX0 
(2.28 kHz) 

PIX1 
(42.84 kHz) 

PIX2 
(3.33 kHz) 

PIX1 
(32.55 kHz) 

PIX4 
(25.57 kHz) 

3.7 9.6 6 xt (0.23%), 0.02 dc 2618 6 xt (0.23%), 0.03 dc 0 xt (0.23%), 0.03 dc 0 

5 17.0 51 xt (1.50%), 0.03 dc 3407 66 xt (1.93%), 0.05 dc 5 xt (0.15%), 0.55 dc 0 

7.4 38.0 119 xt (2.33%), 0.09 dc 5136 148 xt (2.88%), 0.13 dc 13 xt (0.25%), 1.23 dc 1 

11.1 85.8 189 xt (2.45%), 0.19 dc 7732 266 xt (2.93%) 0.28 dc 20 xt (0.25%), 2.79 dc 1 

xt = 2.6% (maximum) 
at tobs>7 ns  

xt = 0.23% (minimum) 
at tobs=3.7 ns xt = 0.25% 

Random coincidences 
+ optical crosstalk (?)  

- Noise counts generated by the sensor in the dark 
- VOV =1 V 
- tobs=3.7  ns  (limited  by  control  system)  →  37  ns 
- toff=1 µs (no afterpulses) 
- # coincidences>20 k 
 

-  
 
                     - Good agreement between 
                                     - Theoretical calculations 
               - ISE-TCAD simulations 
       - Experimental measurements 
          with set-up # 1 and # 2 
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Time-gated GAPD pixel array. Characterization. 
 
• Photon detection probability 
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- VOV=1 V, 2 V 
- tobs=14 ns, toff=1 µs, tm=1 s (nrep=71 Mframes) 
- Tested with a UV-VIS spectrophotometer and calibrated reference detector 

- Results are below expectations due to passivation layer 

UB mesurements (average value)         C. Niclass et al, Proc. SPIE, 2006 

peak (λ=610 nm) 
13.2% (2 V) 

5.5% (1 V) 
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Time-gated GAPD pixel array. Characterization. 
 
• Dynamic range 
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- Defined  as  → 
 

- Ith →  minimum  detectable  intensity  (SNR≈1) 
- Isat→  maximum  detectable  intensity  (saturation  of  the  readout  circuit) 
- In imaging applications, it determines the contrast of the generated images 

Set-up Result (average value) 
- Pulsed light source 
- Variable light intensity (λ=880 nm) 
- VOV=1 V 
- tobs=1274 ns, 14 ns 
- toff=1 µs 
- nrep=10 Mframes (counter capacity) 

Good contrast 

Bad contrast 

With short tobs →  
extension of the 

dynamic range !!! 

Light 
emission 
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Time-gated GAPD pixel array. Characterization. 
 
• 2D imaging 
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Video→ 

Laser 
- ton=22 ns 

DCP 

- tobs=1274  ns  →  0.085  nc/frame 
- tobs=34 ns      →  0.0023  nc/frame 
 

Reduction of the counter 
occupancy !!! 

Light 
emission 

Laser  →  VCSEL  
(λ=850 nm) GAPD array 

- VOV=1 V 
- tobs=1274  ns  →  34  ns 
- toff=1 µs 
- nrep=10 Mframes 
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Time-gated GAPD pixel array. Characterization. 
 
• Thermal effects 

36/57 

- Measured in a climatic chamber within the range -20 °C<T<60 °C 
- VBD drops with T →  dVBD/dT|0.4mA=20 mV/°C (weaker ionization coefficients) 
- DCR rises with T → roughly multiplied by two every 10 °C (higher SRH generation) 
- Afterpulsing (NCR) rises at low T starting at 0 °C (longer trapping lifetimes) 
 

- NCR →  dc  +  afterpulses  +  xt 
- VOV=1 V 
- tm=14 ms, toff=0 s (continuous mode) 

- DCR  →  dc  +  xt (minimum toff=200 ns) 
- VOV=1 V, 2 V 
- tobs=14 ns, toff=1 µs, nrep=1 Mframes, tm=14 ms 

 NCR  ↑  at  low  T 
(afterpulses) 

 hot pixels 

Cumulative plot (NCR)         Average value (NCR, DCR) 

 softer slope at T ↓ 
(NCR deviation ↓)   

DCR(1 V, 60 °C)=350 kHz 
DCR(1 V, -20 °C)=9.8 kHz 

no toff 

toff=1 µs 

NCR(1 V, 60 °C)=630 kHz 
NCR(1 V, -20 °C)=132 kHz 
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Time-gated GAPD pixel array. Characterization. 
 
• Thermal effects 

37/57 

- Measured in a climatic chamber within the range -20 °C<T<60 °C 
- VBD drops with T →  dVBD/dT|0.4mA=20 mV/°C (weaker ionization coefficients) 
- DCR rises with T → roughly multiplied by two every 10 °C (higher SRH generation) 
- Afterpulsing (NCR) rises at low T starting at 0 °C (longer trapping lifetimes) 
         Average value (NCR, DCR) 

DCR(1 V, 60 °C)=350 kHz 
DCR(1 V, -20 °C)=9.8 kHz 

no toff 

toff=1 µs 

T 
(°C) 

Noise rate 
(kHz) 

Expected noise counts 

ILC (2820 BX, 337 ns) CLIC (312 BX, 0.5 ns) 

60 
630 (NCR) 

1 nc/1.5 µs 

598 nc/GAPD/train 0.1 nc/GAPD/train 

350 (DCR) 10-3 nc/GAPD/BX (tobs=10 ns) 
10-4 nc/GAPD/BX (tobs=1 ns) 10-2 nc/GAPD/train 

-20 
132 (NCR) 

1 nc/7.5 µs 

125 nc/GAPD/train 0.02 nc/GAPD/train 

9.8 (DCR) 10-5 nc/GAPD/BX (tobs=10 ns) 
10-6 nc/GAPD/BX (tobs=1 ns) 10-3 nc/GAPD/train 

Better conditions for low noise 
- a nanosecond time-gating scale 
- low working temperature 

- NCR  →  dc  +  afterpulses  +  xt 
- DCR  →  dc  +  xt 
 

NCR(1 V, 60 °C)=630 kHz 
NCR(1 V, -20 °C)=132 kHz 

E. Vilella et al., BITE, 2013. 
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L. Carrara et al.,  IEEE Intl. Solid-State 
Circuits Conference, 2009. 

38/57 

Time-gated GAPD pixel array. Characterization. 
 
• Radiation effects 

- A few publications in the literature with irradiated GAPDs in the 0.35 µm HV-AMS technology 
- Publication with γ rays and protons (fluence 8.3·107 p/cm2/s, flux of 11 MeV, dose of 40 krad) 
 
- In ILC/CLIC presence of e+-e- pairs and neutrons 
- ILC  →  1  kGy/year  (TID)  +  1011 neq /cm2/year (NIEL) (x 10 years of operation) 
- CLIC  →  200  Gy/year  (TID)  +  1010 neq /cm2/year (NIEL) (x 10 years of operation) 
 
- According to the publication: 
- ILC →      DCR(10  kGy=1  Mrad,  γ  ray)  increased  by  a  factor  3-4 
                 DCR(1 V, -20 °C)=9.8  kHz  →  36.45  kHz 
                 DCP(1 V, -20 °C)=10-4 →  3·∙10-4 
                 (long toff, readout after each BX) 
- CLIC →  DCR(2  kGy=200  krad,  γ  ray)  increased  by  a  factor  2 
                DCR(1 V, -20 °C)=9.8  kHz  →  19.6  kHz 
                 DCP(1 V, -20 °C)=10-3 →  3·∙10-3 
                (long toff, readout after each train) 

CLIC 

ILC 
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Time-gated GAPD pixel array. Characterization. 
 
• Power consumption 

39/57 

- PS is due to non-idealitites  →  PS=0 W in HV-AMS 0.35 µm 
- PD is due to a change of state  →  PD= CL·VDD

2·f 
- PD is caused by the readout circuits and the output pads of the chip 

P(DCR), the DCR indicates the frequency of operation 

- tobs=4 ns, toff=1 µs, nrep=100 Mframes (tm=0.4 s) 

VOV=0.8 V VOV=2.2 V ΔVOV=0.2 V/step 

Num. transitions≈DCR·tobs·nrep·430 

VOV=1.2 V 
P=137 mW 

≈4.52· 108 

GAPD array biased at VOV 

- PD,pad=295 µW/MHz (datasheet foundry) 
- PD,cir=8 µW/MHz (calculated), 10 µW/HMz (simulated) 
- PD,TOTAL(1.2 V)=4 mW (circuits) + 133 mW (pads) →  LVDS pad 

?? 
 

PD=0 W 
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Time-gated GAPD pixel array. Characterization. 
 
• Power consumption 

40/57 

- PS is due to non-idealitites  →  PS=0 W in HV-AMS 0.35 µm 
- PD is due to a change of state  →  PD= CL·VDD

2·f 
- PD is caused by the readout circuits and the output pads of the chip 

P(DCR), the DCR indicates the frequency of operation 

- tobs=4 ns, toff=1 µs, nrep=100 Mframes (tm=0.4 s) 

VOV=0.8 V VOV=2.2 V ΔVOV=0.2 V/step 

Num. transitions≈DCR·tobs·nrep·430 

VOV=1.2 V 
P=137 mW 

≈4.52· 108 

PD=PD,circ+PD,pad (‘0’  →  ‘1’  for  1  column) 

GAPD array biased at VOV 

- PD,pad=295 µW/MHz (datasheet foundry) 
- PD,cir=8 µW/MHz (calculated), 10 µW/MHz (simulated) 
- PD,TOTAL(1.2 V)=4 mW (circuits) + 133 mW (pads) →  LVDS pad 

?? 
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Time-gated GAPD pixel array. Characterization. 
 
• Power consumption 

41/57 

- PS is due to non-idealitites  →  PS=0 W in HV-AMS 0.35 µm 
- PD is due to a change of state →  PD= CL·VDD

2·f 
- PD is caused by the readout circuits and the output pads of the chip 

P(DCR), the DCR indicates the frequency of operation 

- tobs=4 ns, toff=1 µs, nrep=100 Mframes (tm=0.4 s) 

VOV=0.8 V VOV=2.2 V ΔVOV=0.2 V/step 

Num. transitions≈DCR·tobs·nrep·430 

VOV=1.2 V 
P=137 mW 

≈4.52· 108 

PD=PD,circ+PD,pad (‘0’  →  ‘1’  for 1 column) 

GAPD array biased at VOV 

- PD,pad=295 µW/MHz (datasheet foundry) 
- PD,cir=8 µW/MHz (calculated), 10 µW/MHz (simulated) 
- PD,TOTAL(1.2 V)=4 mW (circuits) + 133 mW (pads) →  LVDS pad 

?? 
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Time-gated GAPD pixel array. Characterization. 
 
• Power consumption 
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- PS is due to non-idealitites  →  PS=0 W in HV-AMS 0.35 µm 
- PD is due to a change of state  →  PD= CL·VDD

2·f 
- PD is caused by the readout circuits and the output pads of the chip 

P(DCR), the DCR indicates the frequency of operation 

- tobs=4 ns, toff=1 µs, nrep=100 Mframes (tm=0.4 s) 

VOV=0.8 V VOV=2.2 V ΔVOV=0.2 V/step 

Num. transitions≈DCR·tobs·nrep·430 

VOV=1.2 V 
P=137 mW 

≈4.52· 108 

PD=PD,circ+PD,pad (‘1’  →  ‘1’  for 1 column) 

GAPD array biased at VOV 

PD,TOTAL 
- PD,pad=295 µW/MHz (datasheet foundry) 
- PD,cir=8 µW/MHz (calculated), 10 µW/MHz (simulated) 
- PD,TOTAL(1.2 V)=4 mW (circuits) + 133 mW (pads) →  LVDS pad 

?? 
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Time-gated GAPD pixel array. Characterization. 
 
• Power consumption 
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- PS is due to non-idealitites  →  PS=0 W in HV-AMS 0.35 µm 
- PD is due to a change of state  →  PD= CL·VDD

2·f 
- PD is caused by the readout circuits and the output pads of the chip 

P(DCR), the DCR indicates the frequency of operation 

- tobs=4 ns, toff=1 µs, nrep=100 Mframes (tm=0.4 s) 

VOV=0.8 V VOV=2.2 V ΔVOV=0.2 V/step 

Num. transitions≈DCR·tobs·nrep·430 

VOV=1.2 V 
P=137 mW 

≈4.52· 108 

GAPD array biased at VOV ↑ 

PD=PD,circ ↑  + PD,pad ↑  (more  dc  →  more  transitions) 
PD,TOTAL ↑ 

- PD,pad=295 µW/MHz (datasheet foundry) 
- PD,cir=8 µW/MHz (calculated), 10 µW/MHz (simulated) 
- PD,TOTAL(1.2 V)=4 mW (circuits) + 133 mW (pads) →  LVDS pad 

?? 
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Time-gated GAPD pixel array. Characterization. 
 
• Power consumption 
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- PS is due to non-idealitites  →  PS=0 W in HV-AMS 0.35 µm 
- PD is due to a change of state  →  PD= CL·VDD

2·f 
- PD is caused by the readout circuits and the output pads of the chip 

P(DCR), the DCR indicates the frequency of operation 

- tobs=4 ns, toff=1 µs, nrep=100 Mframes (tm=0.4 s) 

VOV=0.8 V VOV=2.2 V ΔVOV=0.2 V/step 

Num. transitions≈DCR·tobs·nrep·430 

VOV=1.2 V 
P=137 mW 

≈4.52· 108 

GAPD array biased at VOV ↑↑ 

PD=PD,circ ↑↑  +  PD,pad ↑↑  (more  dc  →  more  transitions) 
PD,TOTAL ↑↑ 

- PD,pad=295 µW/MHz (datasheet foundry) 
- PD,cir=8 µW/MHz (calculated), 10 µW/MHz (simulated) 
- PD,TOTAL(1.2 V)=4 mW (circuits) + 133 mW (pads) →  LVDS pad 

?? 
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Time-gated GAPD pixel array. Characterization. 
 
• Power consumption 
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- PS is due to non-idealitites  →  PS=0 W in HV-AMS 0.35 µm 
- PD is due to a change of state →  PD= CL·VDD

2·f 
- PD is caused by the readout circuits and the output pads of the chip 

P(DCR), the DCR indicates the frequency of operation 

- tobs=4 ns, toff=1 µs, nrep=100 Mframes (tm=0.4 s) 

VOV=0.8 V VOV=2.2 V ΔVOV=0.2 V/step 

Num. transitions≈DCR·tobs·nrep·430 

VOV=1.2 V 
P=137 mW 

≈4.52· 108 

GAPD array biased at VOV ↑↑↑↑ 

PD=PD,circ ↑↑  +  PD,pad ↓↓  (more  dc  →  less  transitions) 
PD,TOTAL ↓↓ 

- PD,pad=295 µW/MHz (datasheet foundry) 
- PD,cir=8 µW/MHz (calculated), 10 µW/MHz (simulated) 
- PD,TOTAL(1.2 V)=4 mW (circuits) + 133 mW (pads) →  LVDS pad 

?? 
 

Ok 
- 
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Time-gated GAPD pixel array. Characterization. 
 
• Series of beam-tests at CERN with a 120 GeV pion beam 
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The mechanics FGPA (ALTERA Cyclone IV) 

Schottky detector 

GAPD array 

Special features to 
avoid multiscattering: 
• Wafer of 250 µm 
• No chip package 
• PCB drilled under chip 

E. Vilella et al., A test beam set-up for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking, NIM A 694, 2012. 
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Time-gated GAPD pixel array. Characterization. 
 
• Series of beam-tests at CERN with a 120 GeV pion beam 

 

47/57 

Correlation between the GAPD detector 
array and the EUDET/AIDA beam telescope 

GAPD array 
- VOV=1.2 V 
- tobs=30 ns 
- toff=1.75 µs 

J. Trenado et al., IX Jornadas sobre la participación española en futuros 
aceleradores lineales, 2012. 
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¾Outline 
 
 

4. Large arrays in a 3D process 
• Design 
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Time-gated GAPD array in a 3D process. Design. 
 
• A 100% FF is required by ILC/CLIC on detector systems 
• GAPD detectors present dead areas due to 

• Guard-ring to prevent the premature edge breakdown  
• Additional masks to block the STI (technologies <0.250 µm) 
• Monolithically integrated readout circuit 

 
 
 
 
 
 
 
 
 
 
 

• As a result, GAPD detectors present a low FF (<10% in many cases!!) 
• Time-gated GAPD pixel array (0.35 µm HV-AMS  CMOS)  →  FF  =  67% 

• Reduced number of in-pixel transistors 
• Sensors placed in the same n-well (minimum separation between pixels of 1.7 µm) 

• 3D-IC technologies (Global Foundries 130 nm/Tezzaron 3D) are explored as a solution to 
overcome this limitation 

49/57 
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Time-gated GAPD array in a 3D process. Design. 
 
•  3D vertical integration: 

50/57 

WTOP (12 µm thick) WBOTTOM  (750 µm thick) 

sub-detector # 1 

sub-detector # 2 

- Fabricated by Global Foundries 130 nm and 
   vertically integrated by Tezzaron 
- 2-layer stack of logic dies (no-DRAM option) 
- The 2 dies are bonded face-to-face (the designs need 
   to be mirrored) 
- I/O pads are on the back side of WTOP 
- Via-first TSVs for connection between the logic 
   circuitry and the I/O pads 
- Recommended  TSV  pitch  →  100  µm  (dummy  TSVs) 

• Main features of our design: 
- 48 rows x 48 columns 
- 2-different sub-detectors with the same pixel 
   (different sensor area) but different implementations 
        - Sub-detector # 1 (48 rows x 24 columns, FF=66%) 
        - Sub-detector # 2 (48 rows x 24 columns, FF=92%) 
- Total area of 1770 µm x 1770 µm 
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Structures (1) 
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Time-gated GAPD array in a 3D process. Design. 
 
• Sub-detector # 1: 

- Cluster of 1 pixel. For each cluster: 
         - WBOTTOM  (T1)  →  readout  electronics 
         - WTOP (T2)                    →  sensors  (18  µm  x  18  µm) 
- Interconnection  between  layers  →  from  each  GAPD  to  its  readout  circuit 
- FF=66% 

WTOP (T2) WBOTTOM (T1) 

Layout zoom 
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Structures (2) 
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Time-gated GAPD array in a 3D process. Design. 
 
• Sub-detector # 2: 

- Cluster of 4 pixels. For each cluster: 
         - WBOTTOM  (T1)  →  1  sensor  (30 µm x 30 µm) 
         - WTOP (T2)                    →  3  sensors  (18  µm  x  18  µm)  and  readout  electronics  of  the  4  pixels 
- Interconnection  between  layers  →  from  the  30  µm  x  30  µm  to its readout electronics 
- FF=92% 

WTOP (T2) WBOTTOM (T1) 

Layout zoom 
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Time-gated GAPD array in a 3D process. Design. 
 

 
 

53/57 

GAPD design in a 130 nm process 
- p+ anode in an n-well cathode 
- Surrounded by a low-doped p-well guard ring 
- Deep n-well for full isolation with the p-substrate 
- Polysilicon gate around the p+ anode to avoid contact 
  between the STI and the multiplication region for an 
  acceptable DCR 
- The separation between two consecutive GAPDs is filled 
  with n-well  (minimum  separation  →  2.24  µm) 
- Based on C. Niclass et al., IEEE J. Sel. Top. Quantum 
  Electron., 2007 
 

Pixel schematic 
- GAPD + active INH and RST + 2G approach readout circuit 
        - inverter with Vth=VDD/2, VDD =1.2 V 
        - low VOV to reduce the DCR 
        - dynamic latch (1-bit memory cell) controlled by CLK1  
           to reduce the DCP 
        - transmission-gate for sequential readout 
        - digital output 
 
- Δt (from VS to VLATCH) = 0.30 ns 
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Functional diagram (1) 
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Time-gated GAPD array in a 3D process. Design. 
 
• Chip: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• The detector has not been submitted for fabrication due to the delays in the MPW runs of this 
technology 

- Pixel control signals: 
        - INH, RST (time-gated sensor) 
        - CLK1 (time-gated readout circuit) 
        - CLK2m (readout) 
 
- Readout: 
- Sequential by rows during gated-off periods 
- Sequentially activating CLK2m, with m=[1,48] 
- CLK2m →  1  input  pin  +  1  decoder  (SEL)  with 
                  48 outputs 
 
- Pads: 
- 6 output pads + 5 control signal pads (RST, 
   INH, CLK1, CLK2) + SEL + WrEn + EnOut + 
   power supply pads 
- 6 8-bit shift-registers 
 
- Δt to read the whole detector ≈  400  ns 

E. Vilella et al., 3D integration of Geiger-mode avalanche photodiodes aimed to very high fill-factor  pixels  for  future  linear  colliders”,  NIM  A  731, 2013. 
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       Conclusion 
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Summary 
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Category Required Achieved by GAPDs Possible improvement 

σpoint 
(pixel size) 

<5 µm 
(17 µm) 

5.77 µm 
(20 µm) – 

Material budget 0.15% X0 (ILD) 
0.30% X0 (SiD) 0.25% X0 – 

Granularity High 20 µm x 100 µm – 

Timing Single BX resolution Single BX resolution (ILC) 
Time integration (CLIC) 

– 
Time stamping (CLIC) 

Occupancy 

<1 %, 
the noise counts (nc) 

generated by GAPDs should be 
below the background hits (bh) 

9·10-7 bh/GAPD/BX (L2, FTD), 
10-6 nc/GAPD/BX (ILC) 
6·10-6 bh/GAPD/train, 

1,5·10-3 nc/GAPD/train (CLIC) 

 
– 
 

2-input logic AND 

Radiation tolerance 

TID=1 kGy/year, 
NIEL=1011 neq/cm2/year (ILC) 

TID=200 Gy/year, 
NIEL=1010 neq/cm2/year (CLIC) 

9·10-7 bh/GAPD/BX (L2, FTD), 
4·10-6 nc/GAPD/BX (ILC) 
6·10-6 bh/GAPD/train, 

3·10-3 nc/GAPD/train (CLIC) 

 
– 
 

2-input logic AND 

Power <a few mW/cm2 High LVDS pad 

Fill-factor 100% 67% (90%) 3D technologies (to ≈100%) 

EMI Immunity Yes – 

Cost Affordable Yes (MPW runs) – 
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Conclusion 
 
• To complement the discoveries made at LHC, a future linear lepton collider (ILC/CLIC) will be built 
• Future linear colliders impose very extreme requirements on detector systems 
• A prototype GAPD pixel detector aimed mostly at particle tracking at future linear colliders has been 

developed 

• The two most ambitious requirements are the occupancy and the fill-factor: 

• Occupancy →  GAPD  detector  operated  in  a  time-gated mode and at low VOV 
• Design and characterization of 2 chips in a standard CMOS technology (0.35 µm HV-AMS) 
• APDs chip (Run 3) →  Pixel  array  prototype  with  10  x  43  pixels  (67%  FF) 
• Characterization  → 

• reduction of the DCP (time-gated operation + low VOV + low T) 
• avoidance of afterpulses 
• reduction of crosstalk 
• sensitivity to MIPs at beam-test 
• sensitivity to photons (400 nm - 1000 nm) 

• Fill-factor →  3D  technologies  (vertical  stacking  of  two  layers  of  logic  dies) 
• 3D APDs chip →  Design  of  a  GAPD  prototype  with  a  FF=92% 
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Back-up slides 
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HEP experiments. The present. 
 
LHC (Large Hadron Collider) 

 
 
 
 
 
 
 
 
 
 
 
 

• Synchrotron hadron-hadron collider 
• 27 km ring buried underground 
• Two beams of hadrons are accelerated in opposite directions 
• Energy  →  7  TeV  per  beam  (maximum) 
• The two beams are made to collide at the detector area (ATLAS, CMS, ALICE and LHCb) 
• Luminosity →  1·1034 cm-2s-1 
• Main discovery →  Existence  confirmation  of  the  Higgs  boson  (2012) 

59/57 
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HEP experiments. The future. 
 
• Need to study the new particle in great detail 
• This is not possible at LHC 

• Hadron-hadron collision (non-fundamental particles) 
• Broadband initial state 

• Post-LHC era 
• Lepton collider 

• Electron-positron collision (fundamental particles) 
• The  energy  of  each  particle  is  known  →  Precision  measurements  are  possible 

• A circular positron-electron collider is not an option 
• Energy  losses  due  to  synchrotron  radiation  →   
• Implies high energy compensations (not feasible) 
• Or severly increasing the radius of the ring (not feasible either) 

• Next  accelerator  →  Linear  positron-electron collider 
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HEP experiments. Detector systems in ILC/CLIC. 
 
• Detectors  →  To  reconstruct  the  events  generated  right  after  the  collisions 

 
• Two  validated  detector  proposals  →   
 (adopted by ILC and CLIC) 

 

 
 

• General purpose detector: 
• To measure at several points the position of the particles generated, their momentum and 

energy 
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ILD SiD 

Disks to track down to small angles 
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HEP experiments. Detector systems in ILC/CLIC. 
 
• Detectors  →  To  reconstruct  the  events  generated  right  after  the  collisions 

 
• Two  validated  detector  proposals  →   
 (adopted by ILC and CLIC) 

 

 
 

• Subdetector arrangement (SiD): 
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ILD SiD 

Vertex detector 
- Multilayer barrel section (5) 
- FW and BW disks (4) 
- Disks (3) 
- Si pixels 
- To measure space points 
   where particles are 
   produced  

Tracker detector 
- Barrel layers (5) 
- Disks (4) 
- Si strips [SiD] 
- TPC + Si strips + Si pixels [ILD] 
- To measure track curvature 
   of charged particles and 
   obtain their momentum 
 Electromagnetic calorimetry 

- Si pixels – W 
- To measure particles 
   energy 
 

Hadronic calorimetry 

- RPC steel 
- To measure particles 
   energy 

Muon system – To identify 
isolated muons 

Solenoid – Magnet system 
                    (5T) 

GAPDs aimed at the forward region of 
the vertex tracker detector 
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HEP experiments. Future linear lepton colliders. 
 
• Luminosity → 

 
• HD (enhancement factor) →  Beamstrahlung 
                      process 

 
 
 
 
 
 
 
 
 
 
 
 

• ILC/CLIC beam structure → 
        (drives timing requirements 
        for detectors) 
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Beam parameter ILC CLIC 

Energy (TeV) 1  3 

L  →  Luminosity (·1034 cm-2s-1) 2.70 5.90 

nb →  # Bunches/train 2820 312 

frep →  Train repetition rate (Hz) 5 50 

Bunch separation (ns) 337 0.5 

N2 →  # Particles/bunch (·109) 7.50 3.72 

σx/σy →  Beam size (nm/nm) 640/5.7 40/1 

Background hits 
(unwanted) 

Mutual beam-beam 
interaction 
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Functional diagram (2) 

64/57 

HEP experiments. Pair induced background hits in the subdetectors. 
 

Technical Design Report, Volume 4 – Detectors (p. 282) 
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G.F.Dalla Betta,  “Avalanches in Photodiodes”  Ed.,  InTech Pub. (2011) 

Goetzberger, 1963; Cova,1981; Kindt, 1994; custom 
Rochas, 2002, CMOS 0.8; Niclass, 2007, CMOS 0.13; 
Arbat, 2008, CMOS 0.35, Vilella 2009, CMOS 0.35 

Petrillo, 1984; Ghioni, 1988, Lacaita, 1989, custom 
Pancheri, 2007 CMOS 0.7 

Pauchard, 2000; custom 
Rochas, 2001, CMOS 0.8 

Rochas, 2003, CMOS 0.8; Xiao, 2007, CMOS 0.35 

Cova, 1981; Ghioni, 1988, Lacaita, 1989; custom  

Finkelstein , 2006,CMOS 0.18; Hsu, 2009, CMOS 0.18;  
Niclass, 2007, CMOS 0.13; Gersback, 2008, CMOS 0.13, 
Arbat, 2008, CMOS 0.13 

Richardson, 2009, CMOS 0.13, Webster, 2012, CMOS 0.09 
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First steps in GAPDs at the University of Barcelona. 
 
• First steps in GAPDs at the Department of Electronics by Dr. A. Arbat (“Towards a forward tracker 

detector  based  on  Geiger  mode  avalanche  photodiodes  for  future  linear  colliders”, PhD, 2010). 
• In the thesis of Dr. Arbat, 2 standard CMOS technologies for GAPDs aimed to particle tracking are 

explored: 
• 130 nm STMicroelectronics 
• 0.35 µm High Voltage AustriaMicroSystems 

• Conclusion  of  Dr.  Arbat’s  work: 
 
 
 
 
 
 
 

 
 

• To  continue  the  working  line  of  Dr.  Arbat,  in  E.  Vilella’s  thesis: 
• Technology  →  0.35  µm  High  Voltage  AustriaMicroSystems 
• Sensor  size  →  20  µm  x  100  µm 
• Sensor  design  →  p+ in an n-well (wafer is a p-substrate) 
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0.35 µm HV-AMS presents a lower 
DCR due to its lower trap 

concentration 
↓ 

This technology was selected to 
develop a GAPD detector for 

particle tracking 



Eva Vilella Figueras – Berkeley Lab – January 28, 2014 
67/57 

Single pixels with voltage-mode readout circuit. Design. 
 
• Target  →  Voltage-mode readout circuit to operate the sensor at low VOV and reduce the DCR 
• Problem  →  Difficult  to  detect  low  VOV with a small area readout circuit in HV-AMS 0.35 µm 
• Decision  →  Design of 3 pixels with a different readout circuit that overcomes this issue 
• All the pixels consist of   - 1 voltage discriminator (with Vth=VDD/2, VDD =3.3 V) 
                                                   - 1-bit memory cell (time-gated synchronously with the sensor) 
                                                   - 1 pass-gate to activate the pixel readout 
• 1-bit  memory  cell  →  Samples  during  gate-on and holds value during gate-off 

A) 2-grounds (2G) 
- Voltage  discriminator  →  CMOS  inverter  with  Vth=VDD/2 
- VDD=3.3 V in this technology 
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Single pixels with voltage-mode readout circuit. Design. 
 
• Target  →  Voltage-mode readout circuit to operate the sensor at low VOV and reduce the DCR 
• Problem  →  Difficult  to  detect  low  VOV with a small area readout circuit in HV-AMS 0.35 µm 
• Decision  →  Design of 3 pixels with a different readout circuit that overcomes this issue 
• All the pixels consist of   - 1 voltage discriminator (with Vth=VDD/2, VDD =3.3 V) 
                                                   - 1-bit memory cell (time-gated synchronously with the sensor) 
                                                   - 1 pass-gate to activate the pixel readout 
• 1-bit  memory  cell  →  Samples  during  gate-on and holds value during gate-off 

B) Level-shifter (LS) 
- Voltage  discriminator  →  CMOS  inverter  with  Vth=VDD/2 
- VDD=3.3 V in this technology 
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Single pixels with voltage-mode readout circuit. Design. 
 
• Target  →  Voltage-mode readout circuit to operate the sensor at low VOV and reduce the DCR 
• Problem  →  Difficult  to  detect  low  VOV with a small area readout circuit in HV-AMS 0.35 µm 
• Decision  →  Design of 3 pixels with a different readout circuit that overcomes this issue 
• All the pixels consist of   - 1 voltage discriminator (with Vth →  VREF, 0≤VREF≤3.3 V) 
                                                   - 1-bit memory cell (time-gated synchronously with the sensor) 
                                                   - 1 pass-gate to activate the pixel readout 
• 1-bit  memory  cell  →  Samples  during  gate-on and holds value during gate-off 

VOV>VREF 

C) Track-and-latch 
comparator (TL) 
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Single pixels with voltage-mode readout circuit. Design. 
 
• Target  →  Voltage-mode readout circuit to operate the sensor at low VOV and reduce the DCR 
• Problem  →  Difficult  to  detect  low  VOV with a small area readout circuit in HV-AMS 0.35 µm 
• Decision  →  Design of 3 pixels with a different readout circuit that overcomes this issue 
• All the pixels consist of   - 1 voltage discriminator (with Vth →  VREF, 0≤VREF≤3.3  V) 
                                                   - 1-bit memory cell (time-gated synchronously with the sensor) 
                                                   - 1 pass-gate to activate the pixel readout 
• 1-bit  memory  cell  →  Samples  during  gate-on and holds value during gate-off 

VOV>VREF 

C) Track-and-latch 
comparator (TL) 
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Time-gated GAPD pixel array. Characterization. 
 
• Photoemission 
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The avalanches don’t  
expand through the whole 

sensitive area 
Does it affect the 

efficiency of the detector? 

- An emission microscope (PHEMOS 1000) was used to 
   localize the high field regions by detecting the emitted 
   light during the avalanche process 
- Presence of non-uniformities across the array and also 
   within single GAPDs 

• Distribution of photon detection efficiency 
- Set-up to scan a region of the array with a pulsed LED 
- LED  resolution  →  2  µm 
- LED λ →  625  nm 
- Shots  per  spot  →  1  k 
- VOV=3.1 V, tobs=50 ns, toff=5 ms (LED moves to next 
   spot), nrep=1 k 

 

Triggers LED 
and tobs 

Set-up Result 

Sensitive 
region 

Guard ring 

M. Tesař  et  al,  Proc.  Sci.,  2012 
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Functional diagram (2) 

Readout 
protocol 
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Time-gated GAPD array in a 3D process. Design. 
 
• Sequential readout by rows during the gated-off periods: 
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Alternative solutions (HV-AMS) 

Cross-section 

No STI ! 

In this particular technology, and with our structure, the 
guard  ring  is  sensitive  →  ≈  100%  fill-factor seems 

feasible (*) 

TOP  
Sensors & 

readout elec. 

BOTTOM 
Sensors & 

readout elec. 

TOP 
Sensors 

BOTTOM 
Readout elec. 

(*) A. Vilà, Characterization and simulation of avalanche photodiodes for next-generation colliders, Sens. Actuators A (2011). 

Alternative solutions. 
 
• Vertically integrated detector with 0.35 µm HV-AMS standard CMOS technology: 
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Functional diagram (1) 
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Further improvements. Reduction of the threshold event in dSiPMs. 
 
• The time-gated operation can be used to improve the performance of SiPMs 

• SiPM: 
 
 
 
 
 
 
 

• GAPD  based  nature  +  analog  output  →  high  pattern  noise  with  typical  values  from  105 to 106 Hz/mm2 
• The intensity of the impinging signal →  by counting the number of cells fired 
• High  pattern  noise  →  high  threshold event →  not possible to detect weak intensities 

• Typical solutions: 
• Work at cooled temperatures →  pattern  noise  of  103 Hz/mm2 at -20 °C (still high) 
• Switch  off  those  GAPD  cells  with  an  abnormal  DCR  (Philips)  → FF  ↓ 

                                      PDP  ↓ 
                                      DR  ↓ 

• Another possible solution is the time-gated operation with short gated-on  periods… 

An array of GAPD 
cells that are 

connected in parallel 
(each cell has 

binary output) 

The output signal is 
the sum of the 

individual currents of 
the fired cells 

(analog output) 

1 cell 
 2 cells 

 n cells 
(Hamamatsu) 
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Functional diagram (1) 
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Further improvements. Reduction of the threshold event in dSiPMs. 
 
• Experimental set-up: 

 

 

 

 
• Results: 

dSiPM 

- VOV=1 V 
- tobs=200  ns  →  3.2  µs 
- toff=1 µs 
- nrep=105 frames 
 
VCSEL 
- VVCSEL=5  V  →  6  V 
- tlaser=100 ns (within tobs) 

Based on the 10 x 43 
time-gated GAPD array 

≈  5  more  fired  cells  
every 200 ns 

2.  With  VCSEL  → 

below threshold 
event 

≈  the same # 
despite tobs 

The threshold is lower 
for shorter tobs 

Possibility to detect 
weaker intensities! 
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Functional diagram (1) 
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Further improvements. Non-uniformity correction system. 
 
• During the fabrication process, doping profile fluctuations and lattice defects are unavoidably introduced 

DCR fluctuations 

PDP fluctuations 

10 x 43 GAPD array 

- VOV=1 V 
- tobs=10 ns 
- toff=1 µs 
- nrep=10 Mframes 
 

Light source 

- 9 white LEDs 

Consequences 
amongst the pixels 

 of a GAPD array 

Especially problematic in vision systems: Also, GAPD pixels 
present a non- 
linear response - Same  irradiance  → 

   different # counts 
   across the pixels of 
   an array 
- Overlapped areas 
- Levels of 
   representation (bits 
   of contrast) are lost 

430 pixels 
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Functional diagram (1) 
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Further improvements. Non-uniformity correction system. 
 
• The problem can be reduced with correction techniques based on calibration algorithms (equation) 

Before correction 

6% deviation 
(3.8 bits) 

After correction 
(1 linear eq. per pixel) 

1% deviation 
(6.9 bits) 

Calibration 
equation: 

The response of 
the pixels is 
equalized!! 

(p
c)

 
(c

c)
 

High deviation 
- With 1 eq. per pixel, linear correction: - With 1 B-spline per pixel, non-linear correction: 

Ring of 9 white 
LEDs + lens - 4 calibration points 

- 256 interpolated pairs (representation levels) 
- generated values saved in a LUT 

- Results: 

Linear correction Non-linear correction 


