University of Barcelona Department of Electronics

GAPDs in standard CMOS technologies for tracker detectors

Technical talk at Berkeley Lab Eva Vilella Figueras January 28, 2014

Involvement in prototype chips.

- **- Bandgap reference circuit, IBM 90 nm, March 2010**
- With enclosed layout transistors
- Belongs to DHP 0.1, a readout chip for the DEPFET technology
- Spanish program for particle physics (FPA2008-05979-C04-02)
- 1 conference paper

- APDs chip (Run 2), HV-AMS 0.35 µm, April 2010

- Several GAPD pixels with different readout circuits + small GAPD arrays
- First GAPD pixels with digital output at the Univ. Barcelona
- Spanish program for particle physics (FPA2008-05979-C04-02)
- 9 conference papers + 8 journal papers

- APDs chip (Run 3), HV-AMS 0.35 µm, April 2011

- Large GAPD array
- Characterization in beam-tests at CERN
- Spanish program for particle physics (FPA2010-21549-C04-01)
- 4 conference papers + 3 journal papers (+ 2 submitted)
- **- 3D APDs chip, Global Foundries 130 nm/Tezzaron 3D, not submitted**
- Large GAPD array
- Explore a 3D technology (improve GAPD fill-factor)
- AIDA project (Grant Agreement 262025)
- 1 conference paper + 1 journal paper

Eva Vilella Figueras – Berkeley Lab – January 28, 2014

2/57

Involvement in prototype chips.

¾**Outline**

1. Potential applications

- Future linear lepton colliders
- Detector systems in ILC/CLIC

2. GAPDs in CMOS technologies

- Principle of operation and figures of merit
- State-of-the-art
- Front-end electronics

3. Large arrays in a HV-CMOS process

• Design and characterization

4. Large arrays in a 3D process

• Design

Conclusion

¾**Outline**

1. Potential applications

- Future linear lepton colliders
- Detector systems in ILC/CLIC
- 2. CAPDs in CMOS technologies
	- · Principle of operation and figures of merit
	- · State-of-the-art
	- Front and electronics \circ
- S. Large arrays in a HV-CMOS process
	- · Design and characterization
- 4. Large arrays in a 3D process
	- · Design
	- Conclusion

Potential applications.

Department **B** Universitat de Barcelona

HEP experiments. Future linear lepton colliders.

- Target \rightarrow Study in great detail the Higgs boson discovered recently at CERN
- $How?$ \rightarrow At a future linear positron-electron collider
- Two alternative proposals underway:

Department **B** Universitat de Barcelona

HEP experiments. Detector systems for ILC/CLIC.

- Detectors \rightarrow To reconstruct the events generated right after the collisions
- Two validated detector proposals \rightarrow (adopted by ILC and CLIC)

• **Subdetector arrangement (ILD):**

Vertex detector

- **- Barrel**
- VTX **(3 double Si pix layers)**
- To measure space points

Tracker detector

- **- Barrel**
- SIT + SET **(2 + 2 Si strips)**
- TPC (MPGD readout)
- **- End cap**
- FTD **(2 Si pix + 5 Si strip disks)**
- ETD **(2 Si trip layers)**
- To measure track curvature of charged particles (momentum)

Electromagnetic calorimetry

- ECAL (W absorber)
- To measure particles energy

- HCAL (Fe absorber)
- To measure particles energy

Muon system

- To identify isolated muons

8/57

Coil

HEP experiments. Tracking detector requirements.

B Universitat de Barcelona

- **Requirement Value Detector design Beamstrahlung process:Background hits σpoint** <5 µm Pixel size <17 µm **(unwanted)** $<$ 0.15% X₀ per layer (ILD) <150 µm per layer (ILD) **Material** photon $<$ 0.30% X₀ per layer (SiD) <300 µm per layer (SiD) **Mutual beam-beam budget** (↓ Coulomb multiscatt.) + no active cooling e⁻beam \overline{r} **Granularity** High High High number of pixels **interaction** High timing resolution: - Single BX **Occupancy** <1% Photon 11 - Time-slicing (each 50 μ s for a photon (with background hits) 25 μ m x 25 μ m sensor at ILC) e⁺ beam - Time-stamping ILC \rightarrow 1 kGy/year (TID) + **ILC/CLIC beam structure:** Include 10^{11} n_{eq}/cm²/year (NIEL) **Radiation** bunch train inter-train period mitigation CLIC \rightarrow 200 Gy/year (TID) **tolerance** $(-1$ ms ILC) $(199 \text{ ms}\nL)$ techniques (-20 ms CLIC) $(156$ ns CLIC) + 10^{10} n_{eq}/cm²/year (NIEL) **Power** <a few mW/cm² Low power x 2820 BX (ILC) **+ EMI immunity and affordable cost x 312 BX (CLIC) BX=337 ns (ILC)** 0.5 ns (CLIC) Department 9/57
- The physics targets at ILC and CLIC impose very demanding requirements on tracking detectors:

HEP experiments. Tracking technology options.

• **New CMOS pixel technologies are being developed in parallel with the accelerator:**

- Any of these technologies can be integrated in a **3D process**
- A decision on the tracker detector technology has not been made yet…

HEP experiments. Tracking technology options.

• **New CMOS pixel technologies are being developed in parallel with the accelerator:**

- Any of these technologies can be integrated in a **3D process**
- A decision on the tracker detector technology has not been made yet…

¾**Outline**

- 1. Potential applications
	- Future linear lepton colliders \circ
	- Detector systems in ILC/CLIC \bigcirc

2. GAPDs in CMOS technologies

- Principle of operation and figures of merit
- State-of-the-art
- Front-end electronics
- S. Large arrays in a HV-CMOS process
	- · Design and characterization
- 4. Large arrays in a 3D process
	- · Design

Conclusion

Principle of operation of GAPDs.

Main figures of merit. Noise.

Main figures of merit.

B Universitat de Barcelona

State-of-the-art. Custom vs CMOS GAPDs.

Custom GAPDs

CMOS GAPDs

d. HV-CMOS \mathbf{p}^* $\overline{\mathfrak{b}^*}$ \mathbf{p}^* \lbrack n \lbrack D ep n-tub **guard ring**

Rochas (2003)

- Several different configurations are possbible:
- n+ on p-substrate, n-well as guard ring - p+-diff in deep n-well, low doped p as
- guard ring

- Possibility to include advanced functions in the in-pixel electronics
- Very good timing properties
- Acceptable detection properties
- Moderate DCR without STI (1 Hz/ μ m² < DCR < 10^2 Hz/ μ m²)
- High DCR with STI (DCR ≈ 50 kHz/µm2)
- Low fill-factor (< 10% in many cases)
- Low cost

Typical noise trend in CMOS GAPDs

Front-end electronics. Quenching and recharge circuits.

Passive quenching and recharge

Front-end electronics. Sensor mode of operation.

Free running

- The sensor is always ready to trigger an avalanche

Time-gated mode

- Valid for those applications where the signal time arrival can be known in advance (HEP experiments, time-gated FLIM or gated-SPECT)
- The sensor is periodically activated and deactivated under the command of a trigger signal
- -The active short periods (discretized measurements) can be made coincident with the expected signal arrival
- Reduces the detected dark counts, avoids afterpulses, reduces the detected crosstalks

Front-end electronics. Array architecture.

GAPD cameras are composed of a moderate or large number of pixels

 (b)

Random access

- (a) Sequential readout pixel-by-pixel
- (b) Sequential readout by columns
- Simple implementation
- Low frame rates

(c) Event-driven readout

- Pixels are read out asynchronously when an event is generated
- The address (row) of the pixel is sent through the output column
- Aimed to very low intensity applications

(d) Latchless pipelined readout

- Each column is used as a time-preserving delay line
- The delay time contains the information about the position of the pixel
- The information can be reconstructed by a TDC at the end of the column

Department **B** Universitat de Barcelona

19/57

Why Geiger-APDs for tracking?

- A particle tracker is a yes/no application
- It is not necessary to measure the energy of the particle
- A binary device like a GAPD suits the application

• **Performance of GAPDs:**

- Virtually infinite gain of 10^{5} - 10^{6}
- High sensitivity (single-photon sensitivity)
- Fast timing response (possibility of single BX in some future colliders)

• **Implementation:**

- Possible in CMOS technology
- Simple design
- Simple readout (it's a binary sensor)
- **Questions to answer:**
	- Noise? Fits collider requirements?
	- Sensitivity of GAPDs in particle tracking?
	- Fill-factor? Need to cover >90% of the area

¾**Outline**

- 1. Potential applications
	- Future linear lepton colliders \circ
	- Detector systems in ILC/CLIC \bigcirc
- 2. CAPDs in CMOS technologies
	- · Principle of operation and figures of merit
	- State-of-the-art \bigcirc
	- **· Front-end electronics**

3. Large arrays in a HV-CMOS process

- Design and characterization
- 4. Large arrays in a 3D process
	- · Design
	- Conclusion

GAPD pixel array for particle detection. Design.

- Target \rightarrow Reduce the high pattern noise typical of GAPDs
- How? \rightarrow Analysis of different possible solutions:
	- Dedicated technologies with lower doping profiles \rightarrow expensive (in favor of standard CMOS) \odot
	- Active quenching \rightarrow increase of area occupation + reduction of afterpulses only \odot
	- Cooling methods with air cooling \rightarrow ok, but not main idea \odot
	- Time-gated operation \rightarrow ok (fine for HEP applications) \odot
	- + operate at low V_{ov} to reduce the DCR (fine for HEP applications) \odot

Time-gated GAPD pixel with low V_{ov}. Design.

Time-gated GAPD pixel with low V_{ov}. Design.

- Target \rightarrow Voltage-mode readout circuit to operate the sensor at low V_{ov} and reduce the DCR + with low area occupation
- Problem \rightarrow Difficult to implement in HV-AMS 0.35 μ m
- Example readout circuit 1 voltage discriminator (CMOS inverter with V_{th}=V_{DD}/2, V_{DD}=3.3 V)
	- 1-bit memory cell (time-gated synchronously with the sensor)

Time-gated GAPD pixel with low V_{ov}. Design.

- Target \rightarrow Voltage-mode readout circuit to operate the sensor at low V_{ov} and reduce the DCR + with low area occupation
- Problem \rightarrow Difficult to implement in HV-AMS 0.35 μ m
- Implemented readout circuit 1 voltage discriminator (CMOS inverter with V_{th}=V_{DD}/2, V_{DD}=3.3 V)

Time-gated GAPD pixel array. Design.

Features

- Monolithically integrated with the 0.35 µm HV-AMS standard CMOS technology
- 10 rows x 43 columns
- Total sensitive area of 1 mm2 (to facilitate particle observation at beam-test)
- Sensors placed in the same well to increase the fill-factor (FF=67%)
- Readout circuits placed between two consecutive rows of sensors, pixel pitch = $22.9 \mu m \times 138.1 \mu m$
- Radiation effects mitigation techniques and on-chip data processing are not included

E. Vilella et al., A low-noise time-gated single-photon detector in a HV-CMOS technology for triggered imaging, Sens. Actuators A: Phys 201, 2013.

Chip

- Sequential readout by rows during gated-off periods
- Sequentially activating C_{LKN} , with m=[1,10]
- Each output column connected to output buffer and output pad
- No multipliexers nor selection decoders
- 43 output pads + 13 control signal pads (RST, INH, CLK1 and the ten CLK2) + power supply pads
- Δt (from V_S to V_{LATCH}) = 0.32 ns
- Δt (from V_{LATCH} to outside the chip) = 1.33 ns (0.12 ns of C_{LK2m} + 0.26 ns of output buffer + 0.95 of output pad)

Eva Vilella Figueras – Berkeley Lab – January 28, 2014

26/57

Single pixels with voltage-mode readout circuit. Characterization.

• **Electrical crosstalk**

• The GAPDs are placed in the same well to reduce the dead area and increase the fill-factor (FF=67%)

A. Vilà, E. Vilella et al., A crosstalk-free single photon avalanche photodiode located in a shared well, IEEE Electron. Device Lett. 35, 2014.

Eva Vilella Figueras – Berkeley Lab – January 28, 2014

30/57

- Characterization of the electrical crosstalk as a function of t_{obs}
- **Set-up # 1:**

B Universitat de Barcelona

- Electron beam
- Beam energy = 1 keV
- $-$ Beam size = 1 nm
- PCB with chip + FPGA placed in the vacuum chamber during the measurements
- Control and display system placed outside the machine

$$
-V_{\text{OV}}=2 V
$$

- t_{obs}=100 ns (maximum crosstalk)
- $-t_{off}=1$ µs (no afterpulses)
- $n_{rep} = 1.10^6$
- Problems related to the set-up: Progressive oxide charging due to electron beam (change of V_{BD})
- Not possible to completely characterize

2.2% → Maximum electrical crosstalk (1st neighbor)

- Characterization of the electrical crosstalk as a function of t_{obs}
- **Set-up # 2:**

Photon detection probability

$-V_{\text{OV}}=1$ V, 2 V

- $t_{\rm obs}$ =14 ns, $t_{\rm off}$ =1 μ s, $t_{\rm m}$ =1 s (n_{rep}=71 Mframes)
- Tested with a UV-VIS spectrophotometer and calibrated reference detector

UB mesurements(average value) C. Niclass et al, Proc. SPIE, 2006

Department **And B** Universitat de Barcelona

• **Dynamic range**

- Defined as \rightarrow DR = $\log_2 \left(\frac{I_{\text{sat}}}{I_{\text{th}}} \right)$

- I_{th} \rightarrow minimum detectable intensity (SNR≈1)
- I_{sat} \rightarrow maximum detectable intensity (saturation of the readout circuit)
- In imaging applications, it determines the contrast of the generated images

- Pulsed light source

- Variable light intensity (λ=880 nm)
- $-V_{\text{OV}}=1$ V
- $-t_{obs} = 1274$ ns, 14 ns
- $-t_{off}=1 \mu s$
- $n_{\text{ren}} = 10$ Mframes (counter capacity)

Set-up Result (average value)

Department **B** Universitat de Barcelona

35/57

• **Thermal effects**

- Measured in a climatic chamber within the range -20 °C<T<60 °C
- \sim **V_{BD}** drops with T \rightarrow dV_{BD}/dT|_{0.4mA}=20 mV/°C (weaker ionization coefficients)
- **DCR** rises with T → roughly multiplied by two every 10 °C (higher SRH generation)
- **Afterpulsing (NCR)** rises at low T starting at 0 °C (longer trapping lifetimes)

• **Thermal effects**

B Universitat de Barcelona

- Measured in a climatic chamber within the range -20 °C<T<60 °C
- \sim **V**_{BD} drops with T \rightarrow dV_{BD}/dT|_{0.4mA}=20 mV/°C (weaker ionization coefficients)
- **DCR** rises with T → roughly multiplied by two every 10 °C (higher SRH generation)
- **Afterpulsing (NCR)** rises at low T starting at 0 °C (longer trapping lifetimes)

Eva Vilella Figueras – Berkeley Lab – January 28, 2014

• **Radiation effects**

- A few publications in the literature with irradiated GAPDs in the 0.35 µm HV-AMS technology

- Publication with γ rays and protons (fluence 8.3·107 p/cm2/s, flux of 11 MeV, dose of 40 krad)
- In ILC/CLIC presence of e⁺-e⁻ pairs and neutrons
- ILC \rightarrow 1 kGy/year (TID) + 10¹¹ n_{eq}/cm²/year (NIEL) (x 10 years of operation)
- CLIC \rightarrow 200 Gy/year (TID) + 10¹⁰ n_{eq}/cm²/year (NIEL) (x 10 years of operation)

Department **B** Universitat de Barcelona

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 38/57

- P_S is due to non-idealitites $\rightarrow P_S=0$ W in HV-AMS 0.35 μ m
- P_D is due to a change of state $\rightarrow P_D = C_L \cdot V_{DD}^2$ f
- $-P_D$ is caused by the readout circuits and the output pads of the chip

• **Power consumption**

- P_S is due to non-idealitites $\rightarrow P_S=0$ W in HV-AMS 0.35 μ m
- P_D is due to a change of state $\rightarrow P_D = C_L \cdot V_{DD}^2$ f
- $-P_D$ is caused by the readout circuits and the output pads of the chip

40/57

- P_S is due to non-idealitites $\rightarrow P_S=0$ W in HV-AMS 0.35 μ m
- P_D is due to a change of state $\rightarrow P_D = C_L \cdot V_{DD}^2$ f
- $-P_D$ is caused by the readout circuits and the output pads of the chip

- P_S is due to non-idealitites \rightarrow P_S =0 W in HV-AMS 0.35 µm
- P_D is due to a change of state $\rightarrow P_D = C_L \cdot V_{DD}^2$ f
- $-P_D$ is caused by the readout circuits and the output pads of the chip

- P_S is due to non-idealitites \rightarrow P_S =0 W in HV-AMS 0.35 µm
- P_D is due to a change of state $\rightarrow P_D = C_L \cdot V_{DD}^2$ f
- $-P_D$ is caused by the readout circuits and the output pads of the chip

• **Power consumption**

- P_S is due to non-idealitites \rightarrow P_S =0 W in HV-AMS 0.35 µm
- P_D is due to a change of state $\rightarrow P_D = C_L \cdot V_{DD}^2$ f
- $-P_D$ is caused by the readout circuits and the output pads of the chip

0.8 V ΔV_{ov} =0.2 V/step V_{ov} =2.2 V

80,0M

60,0M

DCR (Hz)

 $P_{D,measured} \approx DCR \cdot t_{obs} \cdot n_{rep} \cdot 430 \cdot (P_{D,circ} + P_{D,pad})$

120,0M

100,0M

GAPD array biased at $V_{\text{ov}} \nrightarrow$

- $P_{D,pad}$ =295 µW/MHz (datasheet foundry)
- $-P_{D,cir}^{\text{per}}=8 \mu W/M$ Hz (calculated), 10 μ W/MHz (simulated)
- PD,TOTAL(1.2 V)=4 mW (circuits) + 133 mW (pads) **→ LVDS pad**

```
Department
B Universitat de Barcelona
```
20,0M

40,0M

120

110

 $0,0$

44/57

Eva Vilella Figueras – Berkeley Lab – January 28, 2014

• **Power consumption**

- P_S is due to non-idealitites \rightarrow P_S=0 W in HV-AMS 0.35 µm
- P_D is due to a change of state $\rightarrow P_D = C_L \cdot V_{DD}^2$ f
- $-P_D$ is caused by the readout circuits and the output pads of the chip

P(DCR), the DCR indicates the frequency of operation

GAPD array biased at $V_{\text{ov}} \uparrow \uparrow \uparrow \uparrow \uparrow$

• **Series of beam-tests at CERN with a 120 GeV pion beam**

aceleradores lineales, 2012.

Department **B** Universitat de Barcelona

Eva Vilella Figueras – Berkeley Lab – January 28, 2014

47/57

¾**Outline**

- 1. Potential applications
	- Future linear lepton colliders \circ
	- Detector systems in ILC/CLIC \bigcirc
- 2. CAPDs in CMOS technologies
	- · Principle of operation and figures of merit
	- State-of-the-art \circ
	- **· Front-end electronics**
- S. Large arrays in a HV-CMOS process
	- · Design and characterization

4. Large arrays in a 3D process

• Design

Conclusion

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 48/57

Time-gated GAPD array in a 3D process. Design.

- A 100% FF is required by ILC/CLIC on detector systems
- GAPD detectors present dead areas due to
	- Guard-ring to prevent the premature edge breakdown
	- Additional masks to block the STI (technologies <0.250 µm)
	- Monolithically integrated readout circuit

- As a result, GAPD detectors present a low FF (<10% in many cases!!)
- Time-gated GAPD pixel array (0.35 μ m HV-AMS CMOS) \rightarrow FF = 67%
	- Reduced number of in-pixel transistors
	- Sensors placed in the same n-well (minimum separation between pixels of 1.7 µm)
- 3D-IC technologies (Global Foundries 130 nm/Tezzaron 3D) are explored as a solution to overcome this limitation

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 49/57

uit

Time-gated GAPD array in a 3D process. Design.

• **3D vertical integration:**

- Fabricated by Global Foundries 130 nm and vertically integrated by Tezzaron
- 2-layer stack of logic dies (no-DRAM option)
- The 2 dies are bonded face-to-face (the designs need to be mirrored)
- I/O pads are on the back side of WTOP
- Via-first TSVs for connection between the logic circuitry and the I/O pads
- Recommended TSV pitch → 100 μm (dummy TSVs)

• **Main features of our design:**

- 48 rows x 48 columns
- 2-different sub-detectors with the same pixel (different sensor area) but different implementations
	- Sub-detector # 1 (48 rows x 24 columns, **FF=66%**)
	- Sub-detector # 2 (48 rows x 24 columns, **FF=92%**)
- Total area of 1770 μ m x 1770 μ m

Structures (1) Time-gated GAPD array in a 3D process. Design.

• **Sub-detector # 1:**

- Cluster of 1 pixel. For each cluster:
	- WBOTTOM (T1) \rightarrow readout electronics
	- WTOP (T2) \rightarrow sensors (18 μ m x 18 μ m)
- Interconnection between layers → from each GAPD to its readout circuit
- **FF=66%**

WTOP (T2) WBOTTOM (T1) Department 51/57 **B** Universitat de Barcelona Eva Vilella Figueras – Berkeley Lab – January 28, 2014

Structures (2) Time-gated GAPD array in a 3D process. Design.

• **Sub-detector # 2:**

- Cluster of 4 pixels. For each cluster:
	- WBOTTOM (T1) \rightarrow 1 sensor (30 µm x 30 µm)
	- WTOP (T2) \rightarrow 3 sensors (18 μ m x 18 μ m) and readout electronics of the 4 pixels
- Interconnection between layers \rightarrow from the 30 μ m x 30 μ m to its readout electronics

- **FF=92%**

Time-gated GAPD array in a 3D process. Design.

Pixel schematic

- GAPD + active INH and RST + 2G approach readout circuit
	- inverter with $V_{th} = V_{DD}/2$, $V_{DD} = 1.2$ V
	- low V_{ov} to reduce the DCR
	- dynamic latch (1-bit memory cell) controlled by CLK1 to reduce the DCP
	- transmission-gate for sequential readout
	- digital output

- Δt (from V_S to V_{LATCH}) = 0.30 ns

Department

Amateuri

B Universitat de Barcelona

GAPD design in a 130 nm process

- p+ anode in an n-well cathode
- Surrounded by a low-doped p-well guard ring
- Deep n-well for full isolation with the p-substrate
- Polysilicon gate around the p+ anode to avoid contact between the STI and the multiplication region for an acceptable DCR
- The separation between two consecutive GAPDs is filled with n-well (minimum separation \rightarrow 2.24 μ m)
- Based on C. Niclass et al., IEEE J. Sel. Top. Quantum Electron., 2007

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 53/57

Time-gated GAPD array in a 3D process. Design.

• **Chip:**

- Pixel control signals:

- INH, RST (time-gated sensor)
- CLK1 (time-gated readout circuit)
- $-$ CLK2_m (readout)

- Readout:

- Sequential by rows during gated-off periods
- Sequentially activating CLK2_m, with m=[1,48]
- CLK2_m \rightarrow 1 input pin + 1 decoder (SEL) with 48 outputs

- Pads:

- 6 output pads + 5 control signal pads (RST, INH, CLK1, CLK2) + SEL + WrEn + EnOut + power supply pads
- 6 8-bit shift-registers
- Δt to read the whole detector ≈ 400 ns

The detector has not been submitted for fabrication due to the delays in the MPW runs of this technology

E. Vilella et al., 3D integration of Geiger-mode avalanche photodiodes aimed to very high fill-factor pixels for future linear colliders", NIM A 731, 2013.

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 54/57

¾**Outline**

- 1. Potential applications
	- Future linear lepton colliders \circ
	- Detector systems in ILC/CLIC \bigcirc
- 2. CAPDs in CMOS technologies
	- · Principle of operation and figures of merit
	- State-of-the-art \circ
	- **· Front-end electronics**
- S. Large arrays in a HV-CMOS process
	- · Design and characterization
- 4. Large arrays in a 3D process
	- **· Design**

Conclusion

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 55/57

Summary

Department

of Electronics

B Universitat de Barcelona

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 56/57

Conclusion

- To complement the discoveries made at LHC, a future linear lepton collider (ILC/CLIC) will be built
- Future linear colliders impose very extreme requirements on detector systems
- A prototype GAPD pixel detector aimed mostly at particle tracking at future linear colliders has been developed
- The two most ambitious requirements are the occupancy and the fill-factor:
- **Occupancy** \rightarrow GAPD detector operated in a time-gated mode and at low V_{oV}
	- Design and characterization of 2 chips in a standard CMOS technology (0.35 µm HV-AMS)
		- APDs chip (Run 3) \rightarrow Pixel array prototype with 10 x 43 pixels (67% FF)
		- Characterization \rightarrow
			- reduction of the DCP (time-gated operation + low V_{ov} + low T)
			- avoidance of afterpulses
			- reduction of crosstalk
			- sensitivity to MIPs at beam-test
			- sensitivity to photons (400 nm 1000 nm)
- **Fill-factor** \rightarrow 3D technologies (vertical stacking of two layers of logic dies)
	- 3D APDs chip \rightarrow Design of a GAPD prototype with a FF=92%

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 57/57

Back-up slides

HEP experiments. The present.

LHC (Large Hadron Collider)

- Synchrotron hadron-hadron collider
- 27 km ring buried underground
- Two beams of hadrons are accelerated in opposite directions
- Energy \rightarrow 7 TeV per beam (maximum)
- The two beams are made to collide at the detector area (ATLAS, CMS, ALICE and LHCb)
- Luminosity \rightarrow 1·10³⁴ cm⁻²s⁻¹
- Main discovery \rightarrow Existence confirmation of the Higgs boson (2012)

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 59/57

HEP experiments. The future.

- Need to study the new particle in great detail
- This is not possible at LHC
	- Hadron-hadron collision (non-fundamental particles)
	- Broadband initial state

• **Post-LHC era**

- Lepton collider
	- Electron-positron collision (fundamental particles)
	- The energy of each particle is known \rightarrow Precision measurements are possible
- A circular positron-electron collider is not an option
	- Energy losses due to synchrotron radiation $\rightarrow \Delta E_{syn}[\text{GeV}] = \frac{K}{\text{radius}[\text{km}]} \cdot \left(\frac{E[\text{GeV}]}{m_0[\text{GeV}/c^2]}\right)^4$
	- Implies high energy compensations (not feasible)
	- Or severly increasing the radius of the ring (not feasible either)
- Next accelerator \rightarrow Linear positron-electron collider

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 60/57

HEP experiments. Detector systems in ILC/CLIC.

- Detectors \rightarrow To reconstruct the events generated right after the collisions
- Two validated detector proposals \rightarrow (adopted by ILC and CLIC)

• **General purpose detector:**

• To measure at several points the position of the particles generated, their momentum and energy

Disks to track down to small angles

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 61/57

HEP experiments. Detector systems in ILC/CLIC.

- Detectors \rightarrow To reconstruct the events generated right after the collisions
- Two validated detector proposals \rightarrow (adopted by ILC and CLIC)

• **Subdetector arrangement (SiD):**

Vertex detector

- Multilayer barrel section **(5)**
- FW and BW disks **(4)**
- Disks **(3)**
- Si pixels
- To measure space points where particles are produced

Electromagnetic calorimetry

- Si pixels W
- To measure particles energy
- **Solenoid** Magnet system

Tracker detector

- Barrel layers **(5)**
- Disks **(4)**
- Si strips [SiD]
- TPC + Si strips + Si pixels [ILD]
- To measure track curvature of charged particles and obtain their momentum

Hadronic calorimetry

- RPC steel
- To measure particles energy

Muon system – To identify isolated muons

62/57

Eva Vilella Figueras – Berkeley Lab – January 28, 2014

HEP experiments. Future linear lepton colliders.

B Universitat de Barcelona

Eva Vilella Figueras – Berkeley Lab – January 28, 2014

HEP experiments. Pair induced background hits in the subdetectors.

Technical Design Report, Volume 4 – Detectors (p. 282)

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 64/57

Goetzberger, 1963; Cova,1981; Kindt, 1994; custom Rochas, 2002, CMOS 0.8; Niclass, 2007, CMOS 0.13; Arbat, 2008, CMOS 0.35, Vilella 2009, CMOS 0.35
(b)

Petrillo, 1984; Ghioni, 1988, Lacaita, 1989, custom Pancheri, 2007 CMOS 0.7

Cova, 1981; Ghioni, 1988, Lacaita, 1989; custom

Finkelstein , 2006,CMOS 0.18; Hsu, 2009, CMOS 0.18; Niclass, 2007, CMOS 0.13; Gersback, 2008, CMOS 0.13, Arbat, 2008, CMOS 0.13

Richardson, 2009, CMOS 0.13, Webster, 2012, CMOS 0.09

G.F.Dalla Betta, "Avalanches in Photodiodes" Ed., InTech Pub. (2011)

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 65/57

First steps in GAPDs at the University of Barcelona.

- First steps in GAPDs at the Department of Electronics by *Dr. A. Arbat ("Towards a forward tracker detector based on Geiger mode avalanche photodiodes for future linear colliders", PhD, 2010)*.
- In the thesis of Dr. Arbat, 2 standard CMOS technologies for GAPDs aimed to particle tracking are explored:
	- 130 nm STMicroelectronics
	- 0.35 µm High Voltage AustriaMicroSystems
- Conclusion of Dr. Arbat's work:

0.35 µm HV-AMS presents a lower DCR due to its lower trap concentration

↓

This technology was selected to develop a GAPD detector for particle tracking

- To continue the working line of Dr. Arbat, in E. Vilella's thesis:
	- Technology \rightarrow 0.35 µm High Voltage AustriaMicroSystems
	- Sensor size \rightarrow 20 µm x 100 µm
	- Sensor design \rightarrow p⁺ in an n-well (wafer is a p-substrate)

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 66/57

- Target \rightarrow Voltage-mode readout circuit to operate the sensor at low V_{OV} and reduce the DCR
- Problem \rightarrow Difficult to detect low V_{ov} with a small area readout circuit in HV-AMS 0.35 µm
- Decision → **Design of 3 pixels with a different readout circuit that overcomes this issue**
- All the pixels consist of -1 voltage discriminator (with $V_{th} = V_{DD}/2$, $V_{DD} = 3.3$ V)
	- 1-bit memory cell (time-gated synchronously with the sensor)
	- 1 pass-gate to activate the pixel readout
- 1-bit memory cell \rightarrow Samples during gate-on and holds value during gate-off

- Target \rightarrow Voltage-mode readout circuit to operate the sensor at low V_{oV} and reduce the DCR
- Problem \rightarrow Difficult to detect low V_{ov} with a small area readout circuit in HV-AMS 0.35 µm
- Decision → **Design of 3 pixels with a different readout circuit that overcomes this issue**
- All the pixels consist of -1 voltage discriminator (with $V_{th} = V_{DD}/2$, $V_{DD} = 3.3$ V)
	- 1-bit memory cell (time-gated synchronously with the sensor)
	- 1 pass-gate to activate the pixel readout
- 1-bit memory cell \rightarrow Samples during gate-on and holds value during gate-off

- Target \rightarrow Voltage-mode readout circuit to operate the sensor at low V_{OV} and reduce the DCR
- Problem \rightarrow Difficult to detect low V_{ov} with a small area readout circuit in HV-AMS 0.35 µm
- Decision → **Design of 3 pixels with a different readout circuit that overcomes this issue**
- $\text{All the pixels consist of } -1 \text{ voltage discriminator (with } V_{\text{th}} \rightarrow V_{\text{REF}} 0 \leq V_{\text{REF}} 3.3 \text{ V}$
	- 1-bit memory cell (time-gated synchronously with the sensor)
	- 1 pass-gate to activate the pixel readout
- 1-bit memory cell \rightarrow Samples during gate-on and holds value during gate-off

Eva Vilella Figueras – Berkeley Lab – January 28, 2014

- Target \rightarrow Voltage-mode readout circuit to operate the sensor at low V_{OV} and reduce the DCR
- Problem \rightarrow Difficult to detect low V_{ov} with a small area readout circuit in HV-AMS 0.35 µm
- Decision → **Design of 3 pixels with a different readout circuit that overcomes this issue**
- $\text{All the pixels consist of } -1 \text{ voltage discriminator (with } V_{\text{th}} \rightarrow V_{\text{REF}} 0 \leq V_{\text{REF}} 3.3 \text{ V}$
	- 1-bit memory cell (time-gated synchronously with the sensor)
	- 1 pass-gate to activate the pixel readout
- 1-bit memory cell \rightarrow Samples during gate-on and holds value during gate-off

• **Photoemission**

B Universitat de Barcelona

- An emission microscope (PHEMOS 1000) was used to localize the high field regions by detecting the emitted light during the avalanche process
- Presence of non-uniformities across the array and also within single GAPDs

Distribution of photon detection efficiency

- Set-up to scan a region of the array with a pulsed LED
- LED resolution \rightarrow 2 μ m
- $-LED \lambda \rightarrow 625 \text{ nm}$
- Shots per spot \rightarrow 1 k
- $-V_{\text{OV}}$ =3.1 V, t_{obs}=50 ns, t_{off}=5 ms (LED moves to next spot), $n_{ren} = 1$ k

Eva Vilella Figueras – Berkeley Lab – January 28, 2014

Time-gated GAPD array in a 3D process. Design.

• **Sequential readout by rows during the gated-off periods:**

Alternative solutions.

• **Vertically integrated detector with 0.35 µm HV-AMS standard CMOS technology:**

Further improvements. Reduction of the threshold event in dSiPMs.

- The time-gated operation can be used to improve the performance of SiPMs
- **SiPM:**

An array of GAPD cells that are connected in parallel (each cell has binary output)

The output signal is the sum of the individual currents of the fired cells (analog output)

- GAPD based nature + analog output \rightarrow high pattern noise with typical values from 10⁵ to 10⁶ Hz/mm²
- The intensity of the impinging signal \rightarrow by counting the number of cells fired
- High pattern noise \rightarrow high threshold event \rightarrow not possible to detect weak intensities
- **Typical solutions:**
- Work at cooled temperatures \rightarrow pattern noise of 10³ Hz/mm² at -20 °C (still high)
- Switch off those GAPD cells with an abnormal DCR (Philips) \rightarrow FF \downarrow

PDP ↓

DR ↓

• Another possible solution is the time-gated operation with short gated-on periods…

Department atau f **B** Universitat de Barcelona

Eva Vilella Figueras – Berkeley Lab – January 28, 2014 74/57

Further improvements. Reduction of the threshold event in dSiPMs.

Further improvements. Non-uniformity correction system.

• During the fabrication process, doping profile fluctuations and lattice defects are unavoidably introduced

Further improvements. Non-uniformity correction system.

The problem can be reduced with correction techniques based on calibration algorithms (equation)

