University of Barcelona Department of Electronics

# GAPDs in standard CMOS technologies for tracker detectors

Technical talk at Berkeley Lab Eva Vilella Figueras January 28, 2014



# Involvement in prototype chips.









- Bandgap reference circuit, IBM 90 nm, March 2010
- With enclosed layout transistors
- Belongs to DHP 0.1, a readout chip for the DEPFET technology
- Spanish program for particle physics (FPA2008-05979-C04-02)
- 1 conference paper

#### - APDs chip (Run 2), HV-AMS 0.35 μm, April 2010

- Several GAPD pixels with different readout circuits + small GAPD arrays
- First GAPD pixels with digital output at the Univ. Barcelona
- Spanish program for particle physics (FPA2008-05979-C04-02)
- 9 conference papers + 8 journal papers

#### - APDs chip (Run 3), HV-AMS 0.35 μm, April 2011

- Large GAPD array
- Characterization in beam-tests at CERN
- Spanish program for particle physics (FPA2010-21549-C04-01)
- 4 conference papers + 3 journal papers (+ 2 submitted)

#### - 3D APDs chip, Global Foundries 130 nm/Tezzaron 3D, not submitted

- Large GAPD array
- Explore a 3D technology (improve GAPD fill-factor)
- AIDA project (Grant Agreement 262025)
- 1 conference paper + 1 journal paper

Eva Vilella Figueras – Berkeley Lab – January 28, 2014

2/57

# Involvement in prototype chips.





# ≻<u>Outline</u>

### 1. Potential applications

- Future linear lepton colliders
- Detector systems in ILC/CLIC

### 2. GAPDs in CMOS technologies

- Principle of operation and figures of merit
- State-of-the-art
- Front-end electronics

### 3. Large arrays in a HV-CMOS process

• Design and characterization

#### 4. Large arrays in a 3D process

• Design

### Conclusion



# ≻<u>Outline</u>

### 1. Potential applications

- Future linear lepton colliders
- Detector systems in ILC/CLIC
- 2. GAPDs in GMOS technologies
  - Principle of operation and figures of merit
  - State-of-the-art
  - Front-end electronics
- 3. Large arrays in a HV-CMOS process
  - Design and characterization
- 4. Large arrays in a 3D process
  - Design
  - Condusion

# Potential applications.



 U
 Department of Electronics

 B
 Universitat de Barcelona

### HEP experiments. Future linear lepton colliders.

- Target → Study in great detail the Higgs boson discovered recently at CERN
- How?  $\rightarrow$  At a future linear positron-electron collider
- Two alternative proposals underway:



B Universitat de Barcelona

Eva Vilella Figueras – Berkeley Lab – January 28, 2014

7/57

# HEP experiments. Detector systems for ILC/CLIC.

- Detectors  $\rightarrow$  To reconstruct the events generated right after the collisions
- Two validated detector proposals  $\rightarrow$ (adopted by ILC and CLIC)





#### Subdetector arrangement (ILD):

#### Vertex detector

- Barrel
- VTX (3 double Si pix layers)
- To measure space points where particles are produced

#### **Tracker detector**

- Barrel
- SIT + SET (2 + 2 Si strips)
- TPC (MPGD readout)
- End cap
- FTD (2 Si pix + 5 Si strip disks)
- ETD (2 Si trip layers)
- To measure track curvature of charged particles (momentum)







**Electromagnetic calorimetry** 

- ECAL (W absorber)
- To measure particles energy

#### Hadronic calorimetry

- HCAL (Fe absorber)
- To measure particles energy

#### Muon system

- To identify isolated muons

8/57

#### Coil

- Magnet system (3.5 T)

### HEP experiments. Tracking detector requirements.

B Universitat de Barcelona

- Requirement Value **Detector design Beamstrahlung process: Background hits** Pixel size <17 µm <5 µm  $\sigma_{point}$ (unwanted) <0.15% X<sub>0</sub> per layer (ILD) <150 µm per layer (ILD) Material photon <0.30% X<sub>0</sub> per layer (SiD) <300 µm per layer (SiD) budget  $(\downarrow Coulomb multiscatt.)$ + no active cooling e<sup>-</sup> beam **Mutual beam-beam** High number of pixels Granularity High interaction High timing resolution: - Single BX <1% photon Occupancy - Time-slicing (each 50 µs for a (with background hits)  $25 \,\mu\text{m} \times 25 \,\mu\text{m}$  sensor at ILC) e<sup>+</sup> beam - Time-stamping ILC  $\rightarrow$  1 kGy/year (TID) + **ILC/CLIC** beam structure: Include 10<sup>11</sup> n<sub>eq</sub> /cm<sup>2</sup>/year (NIEL) Radiation bunch train inter-train period mitigation  $CLIC \rightarrow 200 \text{ Gy/year (TID)}$ (199 ms ILC) tolerance (~1 ms ILC) techniques (156 ns CLIC) (~20 ms CLIC) + 10<sup>10</sup> n<sub>eg</sub> /cm<sup>2</sup>/year (NIEL) <a few mW/cm<sup>2</sup> Low power Power x 2820 BX (ILC) + EMI immunity and affordable cost x 312 BX (CLIC) BX=337 ns (ILC) 0.5 ns (CLIC) Department 9/57 nii maali
- The physics targets at ILC and CLIC impose very demanding requirements on tracking detectors:

### HEP experiments. Tracking technology options.

#### **Requirem./Detector** DEPFET MAPS FPCCD GAPD SOI Chrono. Timepix ~3 ~3 ~5 $\sigma_{point}$ (µm) ~1 \_ 2.3 ~1 Material budget (µm) 50 50-100 300 250 70 50 50 13.75 x Granularity (µm x µm) 20 x 20 18.4 x 18.4 5 x 5 10 x 10 55 x 55 20 x 100 13.75 Timing integration integration integration stamping stamping single BX integration 10 kGy $10^{12} \text{ e}/\text{cm}^2$ **Radiation tolerance** 10 kGy 4 Mgy 1 kGy $10^{13} n_{eq} / cm^2$ 886 250 16 5 W/detec. Power mW/cm<sup>2</sup> mW/ch mW/cm<sup>2</sup> Fill-factor (%) 100 87 67 (90) 100 100 100 100 SOI Pixel Detector









- Any of these technologies can be integrated in a **3D process**
- A decision on the tracker detector technology has not been made yet...



# HEP experiments. Tracking technology options.

| Requirem./Detector                                    | DEPFET      | MAPS                                                        | FPCCD                               | Chrono.  | Timepix       | GAPD      | SOI              |
|-------------------------------------------------------|-------------|-------------------------------------------------------------|-------------------------------------|----------|---------------|-----------|------------------|
| σ <sub>point</sub> (μm)                               | ~1          | ~3                                                          | -                                   | ~3       | 2.3           | ~5        | ~1               |
| Material budget (µm)                                  | 50          | 50                                                          | 50                                  | 50-100   | 300           | 250       | 70               |
| Granularity (μm x μm)                                 | 20 x 20     | 18.4 x 18.4                                                 | 5 x 5                               | 10 x 10  | 55 x 55       | 20 x 100  | 13.75 x<br>13.75 |
| Timing                                                | integration | integration                                                 | integration                         | stamping | stamping      | single BX | integration      |
| Radiation tolerance                                   | 10 kGy      | 10 kGy<br>10 <sup>13</sup> n <sub>eq</sub> /cm <sup>2</sup> | 10 <sup>12</sup> e-/cm <sup>2</sup> | -        | 4 Mgy         | -         | 1 kGy            |
| Power                                                 | 5 W/detec.  | 250<br>mW/cm <sup>2</sup>                                   | 16<br>mW/ch                         | -        | 886<br>mW/cm² | -         | -                |
| Fill-factor (%)                                       | 100         | 100                                                         | 100                                 | 100      | 87            | 67 (90)   | 100              |
| Metal layers Radiation Description SOI Pixel Detector |             |                                                             |                                     |          |               |           |                  |

### <u>New CMOS pixel technologies are being developed in parallel with the accelerator</u>:







- Any of these technologies can be integrated in a **3D process**
- A decision on the tracker detector technology has not been made yet...





# ≻<u>Outline</u>

- 1. Potential applications
  - Future linear lepton colliders
  - Detector systems in ILC/CLIC

### 2. GAPDs in CMOS technologies

- Principle of operation and figures of merit
- State-of-the-art
- Front-end electronics
- 3. Large arrays in a HV-CMOS process
  - · Design and characterization
- 4. Large arrays in a 3D process
  - Design

Condusion





### Main figures of merit. Noise.



### Main figures of merit.

B Universitat de Barcelona

### State-of-the-art. Custom vs CMOS GAPDs.

#### **Custom GAPDs**



#### **CMOS GAPDs**

### d. HV-CMOS





- Several different configurations are possbible:
- n<sup>+</sup> on p-substrate, n-well as guard ring
- $\mathsf{p}^{\star}\text{-diff}$  in deep n-well, low doped  $\mathsf{p}$  as guard ring



- Possibility to integrate sensors + readout electronics on the same chip
   Possibility to include advanced functions in the in-pixel electronics
- Very good timing properties
- very good timing properties
- Acceptable detection properties
- Moderate DCR without STI (1 Hz/ $\mu m^2$  < DCR < 10^2 Hz/ $\mu m^2$ )
- High DCR with STI (DCR  $\approx 50 \text{ kHz}/\mu\text{m}^2)$
- Low fill-factor (< 10% in many cases)
- Low cost



#### **Typical noise trend in CMOS GAPDs**



### Front-end electronics. Quenching and recharge circuits.

#### Passive quenching and recharge



### Front-end electronics. Sensor mode of operation.

#### Free running

- The sensor is always ready to trigger an avalanche

#### Time-gated mode

- Valid for those applications where the signal time arrival can be known in advance (HEP experiments, time-gated FLIM or gated-SPECT)
- The sensor is periodically activated and deactivated under the command of a trigger signal
- -The active short periods (discretized measurements) can be made coincident with the expected signal arrival
- Reduces the detected dark counts, avoids afterpulses, reduces the detected crosstalks



### Front-end electronics. Array architecture.

#### GAPD cameras are composed of a moderate or large number of pixels





#### Random access

- (a) Sequential readout pixel-by-pixel
- (b) Sequential readout by columns
- Simple implementation
- Low frame rates

#### (c) Event-driven readout

- Pixels are read out asynchronously when an event is generated
- The address (row) of the pixel is sent through the output column
- Aimed to very low intensity applications







#### (d) Latchless pipelined readout

- Each column is used as a time-preserving delay line
- The delay time contains the information about the position of the pixel
- The information can be reconstructed by a TDC at the end of the column

 
 U
 Department of Electronics

 B
 Universitat de Barcelona

19/57

# Why Geiger-APDs for tracking?

- A particle tracker is a yes/no application
- It is not necessary to measure the energy of the particle
- A binary device like a GAPD suits the application

#### • Performance of GAPDs:

- Virtually infinite gain of 10<sup>5</sup>-10<sup>6</sup>
- High sensitivity (single-photon sensitivity)
- Fast timing response (possibility of single BX in some future colliders)

#### <u>Implementation</u>:

- Possible in CMOS technology
- Simple design
- Simple readout (it's a binary sensor)

#### <u>Questions to answer</u>:

- Noise? Fits collider requirements?
- Sensitivity of GAPDs in particle tracking?
- Fill-factor? Need to cover >90% of the area





# ≻<u>Outline</u>

- 1. Potential applications
  - Future linear lepton colliders
  - Detector systems in ILC/CLIC
- 2. GAPDs in GMOS technologies
  - · Principle of operation and figures of merit
  - State-of-the-art
  - Front-end electronics

### 3. Large arrays in a HV-CMOS process

- Design and characterization
- 4. Large arrays in a 3D process
  - o Design
  - Condusion

### GAPD pixel array for particle detection. Design.

- Target  $\rightarrow$  Reduce the high pattern noise typical of GAPDs
- How?  $\rightarrow$  Analysis of different possible solutions:
  - Dedicated technologies with lower doping profiles  $\rightarrow$  expensive (in favor of standard CMOS)  $\otimes$
  - Active quenching → increase of area occupation + reduction of afterpulses only ⊗
  - Cooling methods with air cooling  $\rightarrow$  ok, but not main idea  $\odot$
  - Time-gated operation  $\rightarrow$  ok (fine for HEP applications)  $\bigcirc$
  - + operate at low  $V_{ov}$  to reduce the DCR (fine for HEP applications)  $\odot$





### Time-gated GAPD pixel with low V<sub>ov</sub>. Design.

# Time-gated GAPD pixel with low V<sub>ov</sub>. Design.

- Target  $\rightarrow$  Voltage-mode readout circuit to operate the sensor at low V<sub>OV</sub> and reduce the DCR + with low area occupation
- Problem  $\rightarrow$  Difficult to implement in HV-AMS 0.35  $\mu$ m
- Example readout circuit 1 voltage discriminator (CMOS inverter with V<sub>th</sub>=V<sub>DD</sub>/2, V<sub>DD</sub>=3.3 V)
  - 1-bit memory cell (time-gated synchronously with the sensor)



### Time-gated GAPD pixel with low V<sub>ov</sub>. Design.

- Target  $\rightarrow$  Voltage-mode readout circuit to operate the sensor at low V<sub>ov</sub> and reduce the DCR + with low area occupation
- Problem  $\rightarrow$  Difficult to implement in HV-AMS 0.35  $\mu$ m
- Implemented readout circuit 1 voltage discriminator (CMOS inverter with V<sub>th</sub>=V<sub>DD</sub>/2, V<sub>DD</sub>=3.3 V)





### Time-gated GAPD pixel array. Design.



#### **Features**

- Monolithically integrated with the 0.35  $\mu m$  HV-AMS standard CMOS technology
- 10 rows x 43 columns
- Total sensitive area of 1 mm<sup>2</sup> (to facilitate particle observation at beam-test)
- Sensors placed in the same well to increase the fill-factor (FF=67%)
- Readout circuits placed between two consecutive rows of sensors, pixel pitch = 22.9  $\mu m$  x 138.1  $\mu m$
- Radiation effects mitigation techniques and on-chip data processing are not included

#### E. Vilella et al., A low-noise time-gated single-photon detector in a HV-CMOS technology for triggered imaging, Sens. Actuators A: Phys 201, 2013.



#### <u>Chip</u>

- Sequential readout by rows during gated-off periods
- Sequentially activating  $C_{LK2m}$ , with m=[1,10]
- Each output column connected to output buffer and output pad
- No multipliexers nor selection decoders
- 43 output pads + 13 control signal pads (RST, INH, CLK1 and the ten CLK2) + power supply pads
- $\Delta t$  (from V<sub>s</sub> to V<sub>LATCH</sub>) = 0.32 ns
- $\Delta t$  (from V<sub>LATCH</sub> to outside the chip) = 1.33 ns (0.12 ns of C<sub>LK2m</sub> + 0.26 ns of output buffer + 0.95 of output pad)



Eva Vilella Figueras – Berkeley Lab – January 28, 2014

26/57



### Single pixels with voltage-mode readout circuit. Characterization.





B Universitat de Barcelona



#### Electrical crosstalk

• The GAPDs are placed in the same well to reduce the dead area and increase the fill-factor (FF=67%)



A. Vilà, E. Vilella et al., A crosstalk-free single photon avalanche photodiode located in a shared well, IEEE Electron. Device Lett. 35, 2014.

B Universitat de Barcelona

Eva Vilella Figueras – Berkeley Lab – January 28, 2014

30/57

- Characterization of the electrical crosstalk as a function of t<sub>obs</sub>
- <u>Set-up # 1</u>:

B Universitat de Barcelona



|                                                   | GAPD array |        |        |                         |        |
|---------------------------------------------------|------------|--------|--------|-------------------------|--------|
|                                                   | PIX0       | PIX1   | PIX2   | PIX3                    | PIX4   |
| Noise counts in the dark                          | 0.36 k     | 7.15 k | 0.54 k | 5.40 k                  | 4.21 k |
| Net counts after beam                             | -          | -      | -      | 0.15 k                  | 6.70 k |
| Negligible crosstalk<br>(2nd neighbor and beyond) |            |        | 2.2    | 2% → Max<br>crosstalk ( |        |
| Department of Electronics                         | ]          |        |        |                         |        |

- Electron beam
- Beam energy = 1 keV
- Beam size = 1 nm
- PCB with chip + FPGA placed in the vacuum chamber during the measurements
- Control and display system placed outside the machine

- t<sub>obs</sub>=100 ns (maximum crosstalk)
- t<sub>off</sub>=1 μs (no afterpulses)
- n<sub>rep</sub>=1·10<sup>6</sup>
- Problems related to the set-up:
   Progressive oxide charging due to electron beam (change of V<sub>BD</sub>)
- Not possible to completely characterize

% → Maximum electrical rosstalk (1st neighbor)

31/57

- Characterization of the electrical crosstalk as a function of t<sub>obs</sub>
- <u>Set-up # 2</u>:

| t <sub>obs</sub><br>(ns) | t <sub>m</sub><br>(μs) | PIX0<br>(2.28 kHz)               | PIX1<br>(42.84 kHz) | PIX2<br>(3.33 kHz)               | PIX1<br>(32.55 kHz)             | PIX4<br>(25.57 kHz) |
|--------------------------|------------------------|----------------------------------|---------------------|----------------------------------|---------------------------------|---------------------|
| 3.7                      | 9.6                    | 6 xt ( <b>0.23%</b> ), 0.02 dc   | 2618                | 6 xt ( <b>0.23%</b> ), 0.03 dc   | 0 xt ( <b>0.23%</b> ), 0.03 dc  | 0                   |
| 5                        | 17.0                   | 51 xt ( <b>1.50%</b> ), 0.03 dc  | 3407                | 66 xt ( <b>1.93%</b> ), 0.05 dc  | 5 xt ( <b>0.15%</b> ), 0.55 dc  | 0                   |
| 7.4                      | 38.0                   | 119 xt ( <b>2.33%</b> ), 0.09 dc | 5136                | 148 xt ( <b>2.88%</b> ), 0.13 dc | 13 xt ( <b>0.25%</b> ), 1.23 dc | 1                   |
| 11.1                     | 85.8                   | 189 xt ( <b>2.45%</b> ), 0.19 dc | 7732                | 266 xt ( <b>2.93%</b> ) 0.28 dc  | 20 xt ( <b>0.25%</b> ), 2.79 dc | 1                   |



#### Photon detection probability

#### - V<sub>OV</sub>=1 V, 2 V

- $t_{obs}$ =14 ns,  $t_{off}$ =1  $\mu$ s,  $t_m$ =1 s ( $n_{rep}$ =71 Mframes)
- Tested with a UV-VIS spectrophotometer and calibrated reference detector

#### **<u>UB mesurements</u>** (average value)

#### C. Niclass et al, Proc. SPIE, 2006





B Universitat de Barcelona

#### Dynamic range

- Defined as  $\rightarrow$  DR =  $\log_2\left(\frac{I_{sat}}{I_{th}}\right)$ 

- $I_{th} \rightarrow$  minimum detectable intensity (SNR~1)
- $I_{sat}$   $\rightarrow$  maximum detectable intensity (saturation of the readout circuit)
- In imaging applications, it determines the contrast of the generated images

#### Set-up

- Pulsed light source
- Variable light intensity ( $\lambda$ =880 nm)
- V<sub>ov</sub>=1 V
- t<sub>obs</sub>=1274 ns, 14 ns
- t<sub>off</sub>=1 μs
- n<sub>rep</sub>=10 Mframes (counter capacity)













Department of Electronics

B Universitat de Barcelona



35/57

#### <u>Thermal effects</u>

- Measured in a climatic chamber within the range -20 °C<T<60 °C

- $V_{BD}$  drops with T  $\rightarrow$  dV<sub>BD</sub>/dT|<sub>0.4mA</sub>=20 mV/°C (weaker ionization coefficients)
- **DCR** rises with T  $\rightarrow$  roughly multiplied by two every 10 °C (higher SRH generation)
- Afterpulsing (NCR) rises at low T starting at 0 °C (longer trapping lifetimes)


#### <u>Thermal effects</u>

B Universitat de Barcelona

- Measured in a climatic chamber within the range -20 °C<T<60 °C
- $V_{BD}$  drops with T  $\rightarrow$  dV<sub>BD</sub>/dT|<sub>0.4mA</sub>=20 mV/°C (weaker ionization coefficients)
- **DCR** rises with T  $\rightarrow$  roughly multiplied by two every 10 °C (higher SRH generation)
- Afterpulsing (NCR) rises at low T starting at 0 °C (longer trapping lifetimes)



### Radiation effects

- A few publications in the literature with irradiated GAPDs in the 0.35 μm HV-AMS technology

- Publication with γ rays and protons (fluence 8.3·10<sup>7</sup> p/cm2/s, flux of 11 MeV, dose of 40 krad)
- In ILC/CLIC presence of e<sup>+</sup>-e<sup>-</sup> pairs and neutrons
- ILC  $\rightarrow$  1 kGy/year (TID) + 10<sup>11</sup> n<sub>eq</sub>/cm<sup>2</sup>/year (NIEL) (x 10 years of operation)
- CLIC  $\rightarrow$  200 Gy/year (TID) + 10<sup>10</sup> n<sub>ea</sub>/cm<sup>2</sup>/year (NIEL) (x 10 years of operation)





Department of Electronics

#### Power consumption

- $P_s$  is due to non-idealitites  $\rightarrow P_s$ =0 W in HV-AMS 0.35  $\mu$ m
- $P_D$  is due to a change of state  $\rightarrow P_D = C_L \cdot V_{DD}^2 \cdot f$
- P<sub>D</sub> is caused by the readout circuits and the output pads of the chip



#### Power consumption

- $P_s$  is due to non-idealitites  $\rightarrow P_s$ =0 W in HV-AMS 0.35  $\mu$ m
- $P_D$  is due to a change of state  $\rightarrow P_D = C_L \cdot V_{DD}^2 \cdot f$
- $P_D$  is caused by the readout circuits and the output pads of the chip



GAPD array biased at Vov



-  $P_{D,pad}$ =295  $\mu$ W/MHz (datasheet foundry)

- $P_{D,cir}^{n}$  = 8  $\mu$ W/MHz (calculated), 10  $\mu$ W/MHz (simulated)
- P<sub>D.TOTAL</sub>(1.2 V)=4 mW (circuits) + 133 mW (pads) → LVDS pad

40/57

#### Power consumption

B Universitat de Barcelona

- $P_s$  is due to non-idealitites  $\rightarrow P_s$ =0 W in HV-AMS 0.35  $\mu$ m
- $P_D$  is due to a change of state  $\rightarrow P_D = C_L \cdot V_{DD}^2 \cdot f$
- $P_D$  is caused by the readout circuits and the output pads of the chip









- $P_{D,pad}$ =295  $\mu$ W/MHz (datasheet foundry)
- $P_{D,cir}$ =8 µW/MHz (calculated), 10 µW/MHz (simulated)
- P<sub>D,TOTAL</sub>(1.2 V)=4 mW (circuits) + 133 mW (pads) → LVDS pad

41/57

#### Power consumption

- $P_s$  is due to non-idealitites  $\rightarrow P_s$ =0 W in HV-AMS 0.35  $\mu$ m
- $P_D$  is due to a change of state  $\rightarrow P_D = C_L \cdot V_{DD}^2 \cdot f$
- P<sub>D</sub> is caused by the readout circuits and the output pads of the chip



#### Power consumption

- $P_s$  is due to non-idealitites  $\rightarrow P_s$ =0 W in HV-AMS 0.35  $\mu$ m
- $P_D$  is due to a change of state  $\rightarrow P_D = C_L \cdot V_{DD}^2 \cdot f$
- $\ensuremath{\mathsf{P}}_{\ensuremath{\mathsf{D}}}$  is caused by the readout circuits and the output pads of the chip



#### Power consumption

B Universitat de Barcelona

- $P_s$  is due to non-idealitites  $\rightarrow P_s=0$  W in HV-AMS 0.35  $\mu$ m
- $P_D$  is due to a change of state  $\rightarrow P_D = C_L \cdot V_{DD}^2 \cdot f$
- $\ensuremath{\mathsf{P}}_{\ensuremath{\mathsf{D}}}$  is caused by the readout circuits and the output pads of the chip

P(DCR), the DCR indicates the frequency of operation



GAPD array biased at Vov ↑↑



 $P_{D}=P_{D,circ} \uparrow \uparrow + P_{D,pad} \uparrow \uparrow \text{ (more dc } \rightarrow \text{ more transitions)}$  $P_{D \mid TOTAI} \uparrow \uparrow$ 

- P<sub>D,pad</sub>=295 μW/MHz (datasheet foundry)
- $P_{D,cir}$ =8  $\mu$ W/MHz (calculated), 10  $\mu$ W/MHz (simulated)
- P<sub>D.TOTAL</sub>(1.2 V)=4 mW (circuits) + 133 mW (pads) → LVDS pad

44/57

#### <u>Power consumption</u>

- $P_s$  is due to non-idealitites  $\rightarrow P_s$ =0 W in HV-AMS 0.35  $\mu$ m
- $P_D$  is due to a change of state  $\rightarrow P_D = C_L \cdot V_{DD}^2 \cdot f$
- $P_D$  is caused by the readout circuits and the output pads of the chip

P(DCR), the DCR indicates the frequency of operation

**GAPD array biased at**  $V_{ov}$   $\uparrow \uparrow \uparrow \uparrow$ 



### Series of beam-tests at CERN with a 120 GeV pion beam





aceleradores lineales, 2012.

 Department

 of Electronics

 B
 Universitat de Barcelona



# ≻<u>Outline</u>

- 1. Potential applications
  - Future linear lepton colliders
  - Detector systems in ILC/CLIC
- 2. GAPDs in GMOS technologies
  - Principle of operation and figures of merit
  - State-of-the-art
  - Front-end electronics
- 3. Large arrays in a HV-CMOS process
  - · Design and characterization

### 4. Large arrays in a 3D process

• Design

Conclusion

- A 100% FF is required by ILC/CLIC on detector systems
- GAPD detectors present dead areas due to
  - Guard-ring to prevent the premature edge breakdown
  - Additional masks to block the STI (technologies <0.250 μm)
  - Monolithically integrated readout circuit





- As a result, GAPD detectors present a low FF (<10% in many cases!!)</li>
- Time-gated GAPD pixel array (0.35  $\mu$ m HV-AMS CMOS)  $\rightarrow$  FF = 67%
  - Reduced number of in-pixel transistors
  - Sensors placed in the same n-well (minimum separation between pixels of 1.7 μm)
- 3D-IC technologies (Global Foundries 130 nm/Tezzaron 3D) are explored as a solution to overcome this limitation

Department or Electronics B Universitat de Barcelona

#### • <u>3D vertical integration</u>:

- Fabricated by Global Foundries 130 nm and vertically integrated by Tezzaron
- 2-layer stack of logic dies (no-DRAM option)
- The 2 dies are bonded face-to-face (the designs need to be mirrored)
- I/O pads are on the back side of WTOP
- Via-first TSVs for connection between the logic circuitry and the I/O pads
- Recommended TSV pitch  $\rightarrow$  100  $\mu m$  (dummy TSVs)

### Main features of our design:

- 48 rows x 48 columns
- 2-different sub-detectors with the same pixel (different sensor area) but different implementations
  - Sub-detector # 1 (48 rows x 24 columns, FF=66%)
  - Sub-detector # 2 (48 rows x 24 columns, FF=92%)
- Total area of 1770  $\mu m$  x 1770  $\mu m$



### Sub-detector # 1:

- Cluster of 1 pixel. For each cluster:
  - WBOTTOM (T1)  $\rightarrow$  readout electronics
  - WTOP (T2)  $\rightarrow$  sensors (18  $\mu$ m x 18  $\mu$ m)
- Interconnection between layers  $\rightarrow$  from each GAPD to its readout circuit
- FF=66%

Department of Electronics

B Universitat de Barcelona







#### • <u>Sub-detector # 2</u>:

- Cluster of 4 pixels. For each cluster:
  - WBOTTOM (T1)  $\rightarrow$  1 sensor (30 µm x 30 µm)
  - WTOP (T2)  $\rightarrow$  3 sensors (18  $\mu$ m x 18  $\mu$ m) and readout electronics of the 4 pixels
- Interconnection between layers  $\rightarrow$  from the 30  $\mu$ m x 30  $\mu$ m to its readout electronics
- FF=92%





### **Pixel schematic**

- GAPD + active INH and RST + 2G approach readout circuit
  - inverter with V<sub>th</sub>=V<sub>DD</sub>/2, V<sub>DD</sub>=1.2 V
  - low  $V_{\mbox{\scriptsize OV}}$  to reduce the DCR
  - dynamic latch (1-bit memory cell) controlled by CLK1 to reduce the DCP
  - transmission-gate for sequential readout
  - digital output

-  $\Delta t$  (from V<sub>s</sub> to V<sub>LATCH</sub>) = 0.30 ns

of Electronics

mi

B Universitat de Barcelona

### GAPD design in a 130 nm process

- p<sup>+</sup> anode in an n-well cathode
- Surrounded by a low-doped p-well guard ring
- Deep n-well for full isolation with the p-substrate
- Polysilicon gate around the p<sup>+</sup> anode to avoid contact between the STI and the multiplication region for an acceptable DCR
- The separation between two consecutive GAPDs is filled with n-well (minimum separation  $\rightarrow$  2.24 µm)
- Based on C. Niclass et al., IEEE J. Sel. Top. Quantum Electron., 2007



### • <u>Chip:</u>

#### - Pixel control signals:

- INH, RST (time-gated sensor)
- CLK1 (time-gated readout circuit)
- CLK2<sub>m</sub> (readout)

#### - Readout:

- Sequential by rows during gated-off periods
- Sequentially activating CLK2<sub>m</sub>, with m=[1,48]
- $CLK2_m \rightarrow 1$  input pin + 1 decoder (SEL) with 48 outputs

#### - Pads:

- 6 output pads + 5 control signal pads (RST, INH, CLK1, CLK2) + SEL + WrEn + EnOut + power supply pads
- 6 8-bit shift-registers
- $\Delta t$  to read the whole detector  $\approx 400$  ns



• The detector has not been submitted for fabrication due to the delays in the MPW runs of this technology

E. Vilella et al., 3D integration of Geiger-mode avalanche photodiodes aimed to very high fill-factor pixels for future linear colliders", NIM A 731, 2013.



54/57 Eva Vilella Figueras – Berkeley Lab – Jan<u>uary 28, 2014</u>



# ≻<u>Outline</u>

- 1. Potential applications
  - Future linear lepton colliders
  - Detector systems in ILC/CLIC
- 2. GAPDs in GMOS technologies
  - Principle of operation and figures of merit
  - State-of-the-art
  - Front-end electronics
- 3. Large arrays in a HV-CMOS process
  - Design and characterization
- 4. Large arrays in a 3D process
  - o Design

### Conclusion

# Summary

| Category                           | Required                                                                                                                                               | Achieved by GAPDs                                                                                                                                               | Possible improvement       |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| σ <sub>point</sub><br>(pixel size) | <5 μm<br>(17 μm)                                                                                                                                       | 5.77 μm<br>(20 μm)                                                                                                                                              | -                          |
| Material budget                    | 0.15% X <sub>0</sub> (ILD)<br>0.30% X <sub>0</sub> (SiD)                                                                                               | 0.25% X <sub>0</sub>                                                                                                                                            | -                          |
| Granularity                        | High                                                                                                                                                   | 20 µm x 100 µm                                                                                                                                                  | -                          |
| Timing                             | Single BX resolution                                                                                                                                   | Single BX resolution (ILC)<br>Time integration (CLIC)                                                                                                           | –<br>Time stamping (CLIC)  |
| Occupancy                          | <1 %,<br>the noise counts (nc)<br>generated by GAPDs should be<br>below the background hits (bh)                                                       | 9·10 <sup>-7</sup> bh/GAPD/BX (L2, FTD),<br>10 <sup>-6</sup> nc/GAPD/BX (ILC)<br>6·10 <sup>-6</sup> bh/GAPD/train,<br>1,5·10 <sup>-3</sup> nc/GAPD/train (CLIC) | –<br>2-input logic AND     |
| Radiation tolerance                | TID=1 kGy/year,<br>NIEL=10 <sup>11</sup> n <sub>eq</sub> /cm²/year (ILC)<br>TID=200 Gy/year,<br>NIEL=10 <sup>10</sup> n <sub>eq</sub> /cm²/year (CLIC) | 9·10 <sup>-7</sup> bh/GAPD/BX (L2, FTD),<br>4·10 <sup>-6</sup> nc/GAPD/BX (ILC)<br>6·10 <sup>-6</sup> bh/GAPD/train,<br>3·10 <sup>-3</sup> nc/GAPD/train (CLIC) | –<br>2-input logic AND     |
| Power                              | <a cm<sup="" few="" mw="">2</a>                                                                                                                        | High                                                                                                                                                            | LVDS pad                   |
| Fill-factor                        | 100%                                                                                                                                                   | 67% (90%)                                                                                                                                                       | 3D technologies (to ≈100%) |
| EMI                                | Immunity                                                                                                                                               | Yes                                                                                                                                                             | -                          |
| Cost                               | Affordable                                                                                                                                             | Yes (MPW runs)                                                                                                                                                  | -                          |

 Department

 of Electronics

 B
 Universitat de Barcelona

# Conclusion

- To complement the discoveries made at LHC, a future linear lepton collider (ILC/CLIC) will be built
- Future linear colliders impose very extreme requirements on detector systems
- A prototype GAPD pixel detector aimed mostly at particle tracking at future linear colliders has been developed
- The two most ambitious requirements are the <u>occupancy</u> and the <u>fill-factor</u>:
- **<u>Occupancy</u>**  $\rightarrow$  GAPD detector operated in a time-gated mode and at low V<sub>ov</sub>
  - Design and characterization of 2 chips in a standard CMOS technology (0.35 μm HV-AMS)
  - <u>APDs chip (Run 3)</u>  $\rightarrow$  Pixel array prototype with 10 x 43 pixels (67% FF)
  - Characterization  $\rightarrow$ 
    - reduction of the DCP (time-gated operation + low V<sub>ov</sub> + low T)
    - avoidance of afterpulses
    - reduction of crosstalk
    - sensitivity to MIPs at beam-test
    - sensitivity to photons (400 nm 1000 nm)
- <u>Fill-factor</u>  $\rightarrow$  3D technologies (vertical stacking of two layers of logic dies)
  - <u>3D APDs chip</u>  $\rightarrow$  Design of a GAPD prototype with a FF=92%





# **Back-up slides**



# HEP experiments. The present.

### LHC (Large Hadron Collider)



- Synchrotron hadron-hadron collider
- 27 km ring buried underground
- Two beams of hadrons are accelerated in opposite directions
- Energy  $\rightarrow$  7 TeV per beam (maximum)
- The two beams are made to collide at the detector area (ATLAS, CMS, ALICE and LHCb)
- Luminosity  $\rightarrow 1.10^{34} \text{ cm}^{-2}\text{s}^{-1}$
- Main discovery  $\rightarrow$  Existence confirmation of the Higgs boson (2012)



### **HEP** experiments. The future.

- Need to study the new particle in great detail
- This is not possible at LHC
  - Hadron-hadron collision (non-fundamental particles)
  - Broadband initial state

### **Post-LHC era**

- Lepton collider
  - Electron-positron collision (fundamental particles)
  - The energy of each particle is known  $\rightarrow$  Precision measurements are possible
- A circular positron-electron collider is not an option
  - Energy losses due to synchrotron radiation  $\rightarrow \Delta E_{syn}[GeV] = \frac{K}{radius[km]} \cdot \left(\frac{E[GeV]}{m_0[GeV/c^2]}\right)^4$ ٠
  - Implies high energy compensations (not feasible) ٠
  - Or severly increasing the radius of the ring (not feasible either)
- Next accelerator  $\rightarrow$  Linear positron-electron collider



Department of Electronics B Universitat de Barcelona



# HEP experiments. Detector systems in ILC/CLIC.

- Detectors  $\rightarrow$  To reconstruct the events generated right after the collisions
- Two validated detector proposals → (adopted by ILC and CLIC)





### • <u>General purpose detector</u>:

 To measure at several points the position of the particles generated, their momentum and energy





Disks to track down to small angles



# HEP experiments. Detector systems in ILC/CLIC.

- Detectors  $\rightarrow$  To reconstruct the events generated right after the collisions
- Two validated detector proposals → (adopted by ILC and CLIC)





• <u>Subdetector arrangement (SiD)</u>:

### Vertex detector

- Multilayer barrel section (5)
- FW and BW disks (4)
- Disks **(3)**
- Si pixels
- To measure space points where particles are produced

#### **Electromagnetic calorimetry**

- Si pixels W
- To measure particles energy
- Solenoid Magnet system
- (5T) Department or Electronics B Universitat de Barcelona



### **Tracker detector**

- Barrel layers (5)
- Disks (4)
- Si strips [SiD]
- TPC + Si strips + Si pixels [ILD]
- To measure track curvature of charged particles and obtain their momentum

### Hadronic calorimetry

- RPC steel
- To measure particles energy

<u>Muon system</u> – To identify isolated muons

62/57

### HEP experiments. Future linear lepton colliders.



Department C Electronics B Universitat de Barcelona

# HEP experiments. Pair induced background hits in the subdetectors.

| Sub-detector | Units                    | Layer | 500 GeV             | 1000 GeV           |
|--------------|--------------------------|-------|---------------------|--------------------|
| VTX-DL       | hits/cm <sup>2</sup> /BX | 1     | $6.320 \pm 1.763$   | $11.774 \pm 0.992$ |
|              |                          | 2     | $4.009 \pm 1.176$   | $7.479 \pm 0.747$  |
|              |                          | 3     | $0.250 \pm 0.109$   | $0.431\pm0.128$    |
|              |                          | 4     | $0.212 \pm 0.094$   | $0.360\pm0.108$    |
|              |                          | 5     | $0.048\pm0.031$     | $0.091\pm0.044$    |
|              |                          | 6     | $0.041 \pm 0.026$   | $0.082 \pm 0.042$  |
| SIT          | hits/cm <sup>2</sup> /BX | 1     | $0.0009 \pm 0.0013$ | $0.0016\pm0.0016$  |
|              |                          | 2     | $0.0002 \pm 0.0003$ | $0.0004\pm0.0005$  |
| FTD          | hits/cm <sup>2</sup> /BX | 1     | $0.072 \pm 0.024$   | $0.145\pm0.024$    |
|              |                          | 2     | $0.046 \pm 0.017$   | $0.102\pm0.016$    |
|              |                          | 3     | $0.025 \pm 0.009$   | $0.070 \pm 0.009$  |
|              |                          | 4     | $0.016 \pm 0.005$   | $0.046 \pm 0.007$  |
|              |                          | 5     | $0.011\pm0.004$     | $0.034 \pm 0.005$  |
|              |                          | 6     | $0.007 \pm 0.004$   | $0.024 \pm 0.006$  |
|              |                          | 7     | $0.006 \pm 0.003$   | $0.022\pm0.006$    |
| SET          | hits/BX                  | 1     | $0.196 \pm 0.924$   | $0.588 \pm 2.406$  |
|              |                          | 2     | $0.239\pm1.036$     | $0.670\pm2.616$    |
| трс          | hits/BX                  | -     | $216\pm302$         | 465 ± 356          |
| ECAL         | hits/BX                  | -     | 444 ± 118           | $1487 \pm 166$     |
| HCAL         | hits/BX                  | -     | $18049\pm729$       | $54507\pm923$      |

Technical Design Report, Volume 4 – Detectors (p. 282)





Goetzberger, 1963; Cova,1981; Kindt, 1994; custom Rochas, 2002, CMOS 0.8; Niclass, 2007, CMOS 0.13; Arbat, 2008, CMOS 0.35, Vilella 2009, CMOS 0.35



Petrillo, 1984; Ghioni, 1988, Lacaita, 1989, custom Pancheri, 2007 CMOS 0.7





Rochas, 2003, CMOS 0.8; Xiao, 2007, CMOS 0.35





Cova, 1981; Ghioni, 1988, Lacaita, 1989; custom



Finkelstein , 2006,CMOS 0.18; Hsu, 2009, CMOS 0.18; Niclass, 2007, CMOS 0.13; Gersback, 2008, CMOS 0.13, Arbat, 2008, CMOS 0.13



Richardson, 2009, CMOS 0.13, Webster, 2012, CMOS 0.09

G.F.Dalla Betta, "Avalanches in Photodiodes" Ed., InTech Pub. (2011)

# First steps in GAPDs at the University of Barcelona.

- First steps in GAPDs at the Department of Electronics by *Dr. A. Arbat ("Towards a forward tracker detector based on Geiger mode avalanche photodiodes for future linear colliders", PhD, 2010).*
- In the thesis of Dr. Arbat, 2 standard CMOS technologies for GAPDs aimed to particle tracking are explored:
  - 130 nm STMicroelectronics
  - 0.35 μm High Voltage AustriaMicroSystems
- Conclusion of Dr. Arbat's work:



### 0.35 µm HV-AMS presents a lower DCR due to its lower trap concentration

 $\mathbf{1}$ 

This technology was selected to develop a GAPD detector for particle tracking

- To continue the working line of Dr. Arbat, in E. Vilella's thesis:
  - Technology  $\rightarrow$  0.35  $\mu$ m High Voltage AustriaMicroSystems
  - Sensor size  $\rightarrow$  20 µm x 100 µm
  - Sensor design  $\rightarrow p^+$  in an n-well (wafer is a p-substrate)



- Target  $\rightarrow$  Voltage-mode readout circuit to operate the sensor at low V<sub>OV</sub> and reduce the DCR
- Problem  $\rightarrow$  Difficult to detect low V<sub>OV</sub> with a small area readout circuit in HV-AMS 0.35 µm
- Decision → Design of 3 pixels with a different readout circuit that overcomes this issue
- All the pixels consist of -1 voltage discriminator (with V<sub>th</sub>=V<sub>DD</sub>/2, V<sub>DD</sub>=3.3 V)
  - 1-bit memory cell (time-gated synchronously with the sensor)
  - 1 pass-gate to activate the pixel readout
- 1-bit memory cell → Samples during gate-on and holds value during gate-off



- Target  $\rightarrow$  Voltage-mode readout circuit to operate the sensor at low V<sub>OV</sub> and reduce the DCR
- Problem  $\rightarrow$  Difficult to detect low V<sub>ov</sub> with a small area readout circuit in HV-AMS 0.35 µm
- Decision → Design of 3 pixels with a different readout circuit that overcomes this issue
- All the pixels consist of -1 voltage discriminator (with V<sub>th</sub>=V<sub>DD</sub>/2, V<sub>DD</sub>=3.3 V)
  - 1-bit memory cell (time-gated synchronously with the sensor)
  - 1 pass-gate to activate the pixel readout
- 1-bit memory cell → Samples during gate-on and holds value during gate-off



- Target  $\rightarrow$  Voltage-mode readout circuit to operate the sensor at low V<sub>ov</sub> and reduce the DCR
- Problem  $\rightarrow$  Difficult to detect low V<sub>ov</sub> with a small area readout circuit in HV-AMS 0.35 µm
- Decision  $\rightarrow$  Design of 3 pixels with a different readout circuit that overcomes this issue
- All the pixels consist of -1 voltage discriminator (with  $V_{th} \rightarrow V_{REF}, 0 \le V_{REF} \le 3.3 V$ )
  - 1-bit memory cell (time-gated synchronously with the sensor)
  - 1 pass-gate to activate the pixel readout
- 1-bit memory cell  $\rightarrow$  Samples during gate-on and holds value during gate-off



- Target  $\rightarrow$  Voltage-mode readout circuit to operate the sensor at low V<sub>ov</sub> and reduce the DCR
- Problem  $\rightarrow$  Difficult to detect low V<sub>ov</sub> with a small area readout circuit in HV-AMS 0.35 µm
- Decision  $\rightarrow$  Design of 3 pixels with a different readout circuit that overcomes this issue
- All the pixels consist of -1 voltage discriminator (with  $V_{th} \rightarrow V_{REF}, 0 \le V_{REF} \le 3.3 V$ )
  - 1-bit memory cell (time-gated synchronously with the sensor)
  - 1 pass-gate to activate the pixel readout
- 1-bit memory cell  $\rightarrow$  Samples during gate-on and holds value during gate-off



#### Photoemission

B Universitat de Barcelona

- An emission microscope (PHEMOS 1000) was used to localize the high field regions by detecting the emitted light during the avalanche process
- Presence of non-uniformities across the array and also within single GAPDs

### Distribution of photon detection efficiency

- Set-up to scan a region of the array with a pulsed LED
- LED resolution  $\rightarrow$  2  $\mu m$
- LED  $\lambda \rightarrow 625 \text{ nm}$
- Shots per spot  $\rightarrow$  1 k
- $V_{OV}$ =3.1 V,  $t_{obs}$ =50 ns,  $t_{off}$ =5 ms (LED moves to next spot),  $n_{ren}$ =1 k



Eva Vilella Figueras – Berkeley Lab – January 28, 2014

Sequential readout by rows during the gated-off periods:


# Alternative solutions.

#### <u>Vertically integrated detector with 0.35 μm HV-AMS standard CMOS technology</u>:



# Further improvements. Reduction of the threshold event in dSiPMs.

- The time-gated operation can be used to improve the performance of SiPMs
- <u>SiPM</u>:

An array of GAPD cells that are connected in parallel (each cell has binary output)



The output signal is the sum of the individual currents of the fired cells (analog output)

- GAPD based nature + analog output  $\rightarrow$  high pattern noise with typical values from 10<sup>5</sup> to 10<sup>6</sup> Hz/mm<sup>2</sup>
- The intensity of the impinging signal  $\rightarrow$  by counting the number of cells fired
- High pattern noise  $\rightarrow$  high threshold event  $\rightarrow$  not possible to detect weak intensities
- **Typical solutions**:
- Work at cooled temperatures → pattern noise of 10<sup>3</sup> Hz/mm<sup>2</sup> at -20 °C (still high)
- Switch off those GAPD cells with an abnormal DCR (Philips)  $\rightarrow$  FF  $\downarrow$

PDP  $\downarrow$ 

 $\mathrm{DR}\downarrow$ 

• Another possible solution is the time-gated operation with short gated-on periods...

Department of Electronics Universitat de Barcelona

74/57 Eva Vilella Figueras – Berkeley Lab – January 28, 2014

## Further improvements. Reduction of the threshold event in dSiPMs.



## Further improvements. Non-uniformity correction system.



During the fabrication process, doping profile fluctuations and lattice defects are unavoidably introduced

## Further improvements. Non-uniformity correction system.

The problem can be reduced with correction techniques based on calibration algorithms (equation)

