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Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.
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Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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�2Brief history

In many ways, jet 
physics has been 

leading the adaptation 
and development of 
advanced ML in HEP

This workshop series was 
born at LBNL in 2017

FNAL 2018
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One of the outcomes of the 2017 workshop was the need for 
a community comparison study of top tagging algorithms.
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better

(paper has details including 
parameter #s, etc.)
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One of the outcomes of the 2017 workshop was the need for 
a community comparison study of top tagging algorithms.

One of the outcomes of the 2018 workshop was the need for 
a community challenge for anomaly detection.

More on this 
in a bit…



�8Community challenges

One of the outcomes of the 2017 workshop was the need for 
a community comparison study of top tagging algorithms.

One of the outcomes of the 2018 workshop was the need for 
a community challenge for anomaly detection.

One of the outcomes of the 2020 workshop was the need for 
a community challenge for unfolding.

Stay tuned!



�92020 Edition: Overview

There was a packed agenda with three 
very full days of interesting talks!

I won’t review every talk … please take a look at 
the slides for all the contributions and for details.  

These slides are some personal highlights.



�10Architectures - Highlights
• Lorentz covariant networks (more on next slide) 
• Yet another particle cloud architecture 

• Jet constituents are permutation invariant thanks to 
QM … need an architecture that acts on sets.  There 
are now a few of these based on Deep Sets (MIT 
group) and various graph networks (UCSB and now 
also University of Zurich) 

• A first study of “capsule networks” in HEP.  These 
networks try to learn directions orthogonal to 
classification directions in feature space.  Supposed to 
be interpretable. 

http://www.apple.com
https://arxiv.org/pdf/1902.08570.pdf
https://indico.cern.ch/event/809820/contributions/3632575/attachments/1969845/3280153/ML4Jets_PC2020_v2.pdf
https://indico.cern.ch/event/809820/contributions/3632545/attachments/1970034/3276790/Capsule_Networks_ML4jets.pdf
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classification directions in feature space.  Supposed to 
be interpretable. 

Classifier = length in capsule space
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�12Architectures - Lorentz Covariance

A. Bogatskiy, B. Anderson, R. Kondor, D. Miller, J. Offermann, M. Roussi

New architecture that is 
Lorentz covariant - output is 

in a representation of the 
Lorentz group and 

transforms with the input

…e.g. for classification, output 
is a scalar (Lorentz invariant)

No need to preprocess as it is 
already invariant under translations 

along h (boosts in z), etc.
Demonstrated to be in the 
same ballpark as other top 
tagging algorithms, but with 

way fewer parameters.

https://indico.cern.ch/event/809820/contributions/3632580/attachments/1970179/3277049/ML4Jets_2019.pdf


�13Generative models - Highlights

• Calorimeter simulation from ATLAS and CALICE 
• Rapid improvements in fidelity

(two different deep generative models)



�14Generative models - Highlights

• Calorimeter simulation from ATLAS and CALICE 
• Rapid improvements in fidelity 

• As a “non-parameteric” fitting function (next slide) 
• For unbinned event subtraction (2 slides from now) 
• For phase space integration

Preliminary results 
for unweighting 
efficiency are 

promising compared 
to state-of-the-art  

(VEGAS and FOAM)

https://indico.cern.ch/event/809820/contributions/3639242/attachments/1970262/3277188/Draftv2.pdf


�15Generative models - Dijet GAN

R. Di Sipio, M. Giannelli, S. Haghighat, S. Palazzo

Generative NN’s are good at 
interpolating - can they be 
used to learn good ~non-

parameteric fitting functions?

Seems to be effective at mjj but 
not yet achieving precision in the 
additional jet kinematic features. 

Perhaps could be useful for 
conditional generation as 

well, i.e. after making cuts.

https://indico.cern.ch/event/809820/contributions/3632582/attachments/1970236/3277146/ML4Jets_SerenaPalazzo.pdf


�16Generative models - Event subtraction

A. Butter, R. Winterhalder, T. Plehn

Proposal to use GANs to do 
unbinned event subtraction

Idea: learn to generate S 
and X where S and X have 
to sum in distribution to B.  

This will make X = B-S.

I’m not sure what the killer application is, but it seems 
like a very nice idea and maybe can be used for 

subtracting backgrounds for scale factors, unfolding, …

https://indico.cern.ch/event/809820/contributions/3632588/attachments/1970231/3277131/subGAN.pdf


�17Decorrelation/Unsupervised - Highlights

• Decorrelation 
• Why do we need to decorrelate?  Might want a 

classifier to not sculpt bumps, so need classifier to 
be ~uncorrelated with e.g. mJ. 

• Decorrelation in CMS (next slide) 
• A new decorrelation scheme (2 slides) 

• Optimal transport 
• How do define how close two jets are to each other? 
• Structure discovery with autoencoders (3 slides) 
• Generalization of energy movers’ distance

https://indico.cern.ch/event/809820/contributions/3632592/attachments/1970718/3278012/Representation_Learning_of_Collider_Events.pdf
https://docs.google.com/presentation/d/1BANhvnHn8iRVpsOiDhEJ0DDSZAxk1VWnPBXNYzN666A/edit#slide=id.g7c4134b3d3_2_1977
https://arxiv.org/abs/1902.02346


H. Qu, for CMS

CMS presented many results 
with state-of-the-art taggers and 
various decorrelation schemes.

DDT + NN only works for 
a fixed WP  

(can always decorrelate 
“by hand” in one place)

They are using rather complex 
networks compared to what we 

are doing - they have more 
power, but do they understand 

their uncertainties?

�18Decorrelation - CMS

(large scale factors →)

https://indico.cern.ch/event/809820/contributions/3632617/attachments/1970786/3278138/MassDecorrelation_ML4Jets_H_Qu.pdf


�19Decorrelation - DisCo

G. Kasieczka, D. Shih

New alternative to 
adversarial 

decorrelation using 
“Distance Correlation” 

Much easier to train 
because not minimax … 

also has only one 
additional parameter 

(not a whole NN’s worth)

They did a nice recast of 
the ATLAS result as their 

benchmark!

better

https://indico.cern.ch/event/809820/contributions/3632618/attachments/1970838/3278236/DiscoFever.pdf


Jack Collins

Top jets

Physical scales in a problem can be automatically discovered

�20Semi-supervised - VAEs to find structure

b is the cost for encoding information

https://indico.cern.ch/event/809820/contributions/3632592/attachments/1970718/3278012/Representation_Learning_of_Collider_Events.pdf


�21Anomaly detection - Highlights

• This session was special - we still had talks of new 
ideas, but additionally heard LHC Olympics solutions 

• At the end of the session, we unveiled the first of three 
“black boxes” with simulations that may or may not 
have had added signal. 

• We heard very positive feedback especially from ATLAS/
CMS experimentalists who told us that this was a great 
exercise for them to prepare for data analyses



�22Anomaly detection - New methods

D. Shih

Many new methods were presented in the anomaly detection session! 

https://indico.cern.ch/event/809820/contributions/3632639/attachments/1971093/3278904/ML4Jets_Anomaly_Detection_Intro.pdf
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D. Shih

Many new methods were presented in the anomaly detection session! 

https://indico.cern.ch/event/809820/contributions/3632639/attachments/1971093/3278904/ML4Jets_Anomaly_Detection_Intro.pdf


�24Anomaly detection - Tradeoffs

P. Ramiro, J. Collins, B. Nachman, D. Shih

No algorithm will work 
best everywhere!

It is likely that we will 
need multiple 
approaches

This is just one plot that 
shows the complimentarily 

between a semi-
supervised approach and 
an unsupervised approach

The semi-supervised approach 
does better when there is enough 
signal while the unsupervised one 

doesn’t use signal at all so is 
independent of S/B.

https://indico.cern.ch/event/809820/contributions/3650749/attachments/1970309/3277259/pablo_martin.pdf
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�28Anomaly detection - LHC Olympics

Look at 1000 
histograms



�29Anomaly detection - LHC Olympics

UCB 
Cosmology 

team

Look at 1000 
histograms



�30LHC Olympics: next steps

• There will be another mini workshop just before 
BOOST where boxes 2 and 3 will be unveiled.
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Figure 8. Left: m
JJ

distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
m

JJ

' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2 ⇥ 10�3.

Figure 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to
discriminate events in the signal region (left plot) from those in the sideband (second plot). The third
plot shows in red the 0.2% most signal-like events determined by the classifier trained in this way. The
rightmost plot shows in red the truth-level signal events.

signal region from those of the sideband, the 0.2% most signal-like events as determined by

the classifier are plotted in red in the third plot of Fig. 9, overlaid on top of the remaining

events in gray. The classifier has selected a population of events with m
J A

' 400 GeV and

– 15 –

set new limits
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�31Anomaly detection - Bonus!
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Phys. Rev. Lett. 121 (2018) 241803
J. Collins, K. Howe, BPN

Our first data result from ATLAS will come out this spring!

Aviv 
Cukierman



�32Inference and Interp. - Highlights

• Bayesian neural networks 
• Can encode some forms of uncertainty 

• High-dimensional uncertainties with AI Safety (next slide) 
• Unfolding 

• A generalization of iterative Bayesian unfolding (2 

slides) 
• Conditional generative model (basically learn true 

given reco) 
• Benchmarking (3 slides)



�33Machine Learning Inference and Interp.

High-dimensional uncertainties are 
a real challenge for deploying deep 

networks on low-level features!

C. Shimmin and B. Nachman

https://indico.cern.ch/event/809820/contributions/3632669/attachments/1971503/3279677/ml4jets_AI_safety.pdf


�34Machine Learning Inference and Interp.

P. Komiske, A. Andreassen, E. Metodiev, B. Nachman, J. Thaler

It is now possible to unfold the “full phase space” i.e. all 
of the 4-vectors and particle types in a single event !!

(IBU = iterative Bayesian unfolding, standard in ATLAS)

https://indico.cern.ch/event/809820/contributions/3632647/attachments/1971148/3279013/PTK_ML4Jets_NYC.pdf


�35Benchmarking
Included a live demo!  Could 
be used for future challenges 
as well as for analysis in the 

collaboration - can we 
update all results at once if 
e.g. b-tagging is improved?

(click this to see the slides)

https://indico.cern.ch/event/809820/contributions/3632640/attachments/1971191/3279096/ROB-ML4Jets.pdf


�36Applications and experimental methods

• Vertexing with graph networks 
• Set to graph networks 

• Mixture density networks for pixel clusters in dense 

environments 

• Displaced jet tagging (next slide)

(Gaussian mixture 
model where mixture 
coefficients are NNs)

https://indico.cern.ch/event/809820/contributions/3632659/attachments/1971659/3280030/GNN_NYU_3_Jan_2020.pdf


�37Applications and experimental methods

Displaced jet tagging in CMS - very sophisticated! 
high dimensional + decorelation 

R. Bainbridge, for CMS

no idea how to do signal uncertainties 
… and they don’t either

https://indico.cern.ch/event/809820/contributions/3632642/attachments/1971711/3280112/200117_ML4Jets_Bainbridge.pdf


�38Summary

There was a packed agenda with three 
very full days of interesting talks!

I won’t review every talk … please take a look at 
the slides for all the contributions and for details.  

These slides are some personal highlights.



�39Outlook



�40Conclusions and outlook
Questions?


