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In many ways, |et
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Lawrence Berkeley National Laboratory ] .
leading the adaptation
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Machine Learning for Jet Physics advanced ML in HEP

14-16 November 2018 This workshop series was
America/Chicago timezone born at LBNI_ in 201 7
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15-17 January 2020

Kimmel Center for University Life
America/New_York timezone




Community challenges

One of the outcomes of the 2017 workshop was the need for
a community comparison study of top tagging algorithms.
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Community challenges

One of the outcomes of the 2017 workshop was the need for
a community comparison study of top tagging algorithms.

One of the outcomes of the 2018 workshop was the need for
a community challenge for anomaly detection.
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LHCOIlympics2020

More on this
In a bit...




Community challenges

One of the outcomes of the 2017 workshop was the need for
a community comparison study of top tagging algorithms.

One of the outcomes of the 2018 workshop was the need for
a community challenge for anomaly detection.

One of the outcomes of the 2020 workshop was the need for
a community challenge for unfolding.

Stay tuned!



2020 Edition: Overview

There was a packed agenda with three
very full days of interesting talks!

| won't review every talk ... please take a look at
the slides for all the contributions and for details.
These slides are some personal highlights.
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Architectures - Highlights

* L orentz covariant networks (more on next slide)
* Yet another particle cloud architecture

e Jet constituents are permutation invariant thanks to

QM ... need an architecture that acts on sets. There
are now a few of these based on Deep Sets (MIT
group) and various graph networks (UCSB and now
also University of Zurich)
» A first study of “capsule networks™ in HEP. These
networks try to learn directions orthogonal to
classification directions in feature space. Supposed to

be interpretable.



http://www.apple.com
https://arxiv.org/pdf/1902.08570.pdf
https://indico.cern.ch/event/809820/contributions/3632575/attachments/1969845/3280153/ML4Jets_PC2020_v2.pdf
https://indico.cern.ch/event/809820/contributions/3632545/attachments/1970034/3276790/Capsule_Networks_ML4jets.pdf
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» A first study of “capsule networks™ in HEP. These
networks try to learn directions orthogonal to
classification directions in feature space. Supposed to
be interpretable.

Classifier = length in capsule space


http://www.apple.com
https://arxiv.org/pdf/1902.08570.pdf
https://indico.cern.ch/event/809820/contributions/3632575/attachments/1969845/3280153/ML4Jets_PC2020_v2.pdf
https://indico.cern.ch/event/809820/contributions/3632545/attachments/1970034/3276790/Capsule_Networks_ML4jets.pdf

Architectures - Lorentz Covariance

. . Fout = Pout(8)F out
New architecture that Is

Lorentz covariant - output is
iNn a representation of the
Lorentz group and
transforms with the input

...e.q. for classitication, output
is a scalar (Lorentz invariant)

F, = p)(8)F; F3 = p3(8)F3

No need to preprocess as it Is
already invariant under translations Demonstrated to be in the
along n (boosts in z), etc. same ballpark as other top
tagging algorithms, but with

A. Bogatskiy, B. Anderson, R. Kondor, D. Miller, J. Offermann, M. Roussi Way fewer parameters-
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Calorimeter simulation from ATLAS and CALICE

Rapid improvements in fidelity
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Generative models - Highlights

o Calorimeter simulation from ATLAS and CALICE
 Rapid improvements in fidelity

* As a “non-parameteric” fitting function (next slide)

 For unbinned event subtraction (2 slides from now)

* For phase space integration

I-flow + Sherpa: Preliminary results
Phase Space Integration | for unweighting

| efficiency are

promising compared
— g(x;)
| (VEGAS and FOAM)

to state-of-the-art

-
Buiidwes

apply gradient descent



https://indico.cern.ch/event/809820/contributions/3639242/attachments/1970262/3277188/Draftv2.pdf

Generative models - Dijet GAN

Generative NN's are good at
interpolating - can they be
used to learn good ~non-

parameteric fitting functions?

!
{
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R. Di Sipio, M. Giannelli, S. Haghighat, S. Palazzo

TIMGS + Py8
4p fit: x%/dof = 55.0/56 = 0.98
[ GAN: %%/dof = 65.4/73 = 0.90

Events / Bin Width

Dijet system m [TeV]

Seems to be effective at m; but
not yet achieving precision in the
additional jet kinematic features.

Perhaps could be useful for
conditional generation as
well, I.e. after making cuts.


https://indico.cern.ch/event/809820/contributions/3632582/attachments/1970236/3277146/ML4Jets_SerenaPalazzo.pdf

x 101

Proposal to use GANs to do =
unbinned event subtraction % 15,
2 1.0
|dea: learn to generate S % 0.5
and X where S and X have 001 s |
to sum In distribution to B. 20 40 6'[)' 80 100
This will make X = B-S. Be- [GeV]

I'm not sure what the killer application is, but it seems
Ike a very nice idea and maybe can be used for
subtracting backgrounds for scale factors, unfolding, ...

A. Butter, R. Winterhalder, T. Plehn



https://indico.cern.ch/event/809820/contributions/3632588/attachments/1970231/3277131/subGAN.pdf

Decorrelation/Unsupervised - Highlights

e Decorrelation

N

 Why do we need to decorrelate”? Might want a

classifier to no
ne ~uncorrela

t sculpt bumps, so need classitier to
'ed with e.g. my.

e Decorrelation

in CMS (next slide)

A new decorrelation scheme (2 slides)

* Optimal transport
 How do define how close two jets are to each other?

o Structure discovery with autoencoders (3 slides)

 Generalization

of energy movers’ distance



https://indico.cern.ch/event/809820/contributions/3632592/attachments/1970718/3278012/Representation_Learning_of_Collider_Events.pdf
https://docs.google.com/presentation/d/1BANhvnHn8iRVpsOiDhEJ0DDSZAxk1VWnPBXNYzN666A/edit#slide=id.g7c4134b3d3_2_1977
https://arxiv.org/abs/1902.02346

Decorrelation - CMS

CMS presented many results
with state-of-the-art taggers and
various decorrelation schemes.

DDT + NN only works for
a fixed WP

(can always decorrelate

“by hand” in one place)

They are using rather complex
networks compared to what we
are doing - they have more
power, but do they understand
their uncertainties”

(large scale factors =) «|

H. Qu, for CMS
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https://indico.cern.ch/event/809820/contributions/3632617/attachments/1970786/3278138/MassDecorrelation_ML4Jets_H_Qu.pdf

Decorrelation - DisCo

New alternative to

. 105 ] e ITn
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" " o Dy
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Distance Correlation 104 e Adshonst
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. . DNN
Much easier to train DNN-planing
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. . 101
They did a nice recast of d
the ATLAS result as their
benchmark! 100 ,
101 10°
Rso

G. Kasieczka, D. Shih



https://indico.cern.ch/event/809820/contributions/3632618/attachments/1970838/3278236/DiscoFever.pdf

Semi-supervised - VAESs to find structure g
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Physical scales in a problem can be automatically discovered

Jack Collins
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Anomaly detection - Highlights

* [his session was special - we still had talks of new
ideas, but additionally heard LHC Olympics solutions

* At the end of the session, we unveiled the first of three
“black boxes” with simulations that may or may not
have had added signal.

* We heard very positive feedback especially from ATLAS/
CMS experimentalists who told us that this was a great
exercise for them to prepare for data analyses



Anomaly detection - New methods

Many new methods were presented in the anomaly detection session!

A
autoencoders
Some searches LDA
(train signal ANODE
versus data) CWol a
SALAD
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Anomaly detection - New methods

Many new methods were presented in the anomaly detection session!
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Anomaly detection - Tradeoffs

No algorithm will work
best everywhere!

It is likely that we will
need multiple
approaches

This is just one plot that
shows the complimentarily
between a semi-
supervised approach and
an unsupervised approach

P. Ramiro, J. Collins, B. Nachman, D. Shih
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The semi-supervised approach
does better when there is enough
signal while the unsupervised one

doesn't use signal at all so is
independent of S/B.
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LHC Olympics 2020: Black Boxes

“Data” (Pythia)

ettt ——————

Organizers: Gregor Kasieczka, Ben Nachman & David Shih I == oerieve |
10 Sim. (Herwig)
, 10° [ Signal
. o 10%;
Three black boxes of simulated data were prepared: 2 ool
1
e | million events each 0
10°
®  4.vectors of every reconstructed particle (hadron) in the event =215 fi
£ 2 1.00 N
® Particle ID, ch included 207 TN
article ID, charge, etc not include 050L Lot agos 660G BoMG
my [GeV]

e Single R=1 jet trigger pT>1.2 TeV

e Black boxes are meant to be representative of actual data, meaning they are mostly
background and may contain signals of new physics

In addition, a sample of IM QCD dijet events (produced with Pythia8 and
Delphes3.4.1) was provided as a background sample.

https://doi.org/10.5281/zenodo.354772|

I

10000



Anomaly detection - LHC Olympics

Box 1

Signal: 834 events

Z'->XY; X,Y->qq
(same topology as R&D dataset)

mZ' = 3823 GeV

mX =732 GeV
mY = 378 GeV
q
732 GeV
Z d g
38TeV q
378 GeV



Anomaly detection - LHC Olympics

Box 1
Signal: 834 events
Z'->XY; X,Y->qq
(same topology as R&D dataset)
mZ’ = 3823 GeV M = 3823 GeV
mX = 732 GeV
mY = 378 GeV Human NN -
LOA I
q
VRNN
732 GeV Density estimation [INEEGGEN
A Tag N' Train [
z ’ I
. ILF Autoencoder [
38TeV. "\ g ResNet+BDT |
L RNN
378 GeV
PCA —

Wa
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Anomaly detection - LHC Olympics

Box 1 | ook at 1000

Signal: 834 events h | StO rams
Z'->XY; X,Y->qq g
(same topology as R&D dataset)
mZ’ = 3823 GeV M = 3823 GeV
mX = 732 GeV
mY = 378 GeV Human NN -
LA I
q
VRNN [
732 GeV Density estimation [INEEGGEN
A Tag N' Train [
z ’ I
. ILF Autoencoder [
38TeV. "\ g ResNet+BDT |
L RNN
378 GeV
PCA —
q 0 1000 2000 3000 4000 5000 6000



Anomaly detection - LHC Olympics

Box 1 | ook at 1000

Signal: 834 events .
histograms
Z'->XY; X,Y->qq
(same topology as R&D dataset)
M7 = 3823 GeV U 834 Signal Events
mX = 732 GeV
Cosmo I ogy
mY = 378 GeV Human NN
LDA
5 T : VRNN
732 GeV 2 B ,ﬁ Density estimation
x Tag N' Train
’ (
A Autoencoder
3.8 TeV \ ResNet+BDT
L RNN
378 GeV
PCA

q 100 1000 10000 100000



LHC Olympics: next steps

* There will be another mini workshop just before
BOOST where boxes 2 and 3 will be unveiled.

Anomaly Detection Mini-Workshop -- LHC Summer Olympics 2020

July 18, 2020
INF/AP Lecture Hall
Europe/Berlin timezone

pe/Berlin tim



Anomaly detection - Bonus!

Phys. Rev. Lett. 121 (2018) 241803
J. Collins, K. Howe, BPN

No signal With signal
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Our first data result from ATLAS will come out this spring!



Inference and Interp. - Highlights

 Bayesian neural networks

* High-dimensional uncertainties with Al Safety (next slide)
* Unfolding
* A generalization of iterative Bayesian unfolding (2
slides)
e Conditional generative model (basically learn true
given reco)

 Benchmarking (3 slides)



Machine Learning Inference and Interp.

We show that is possible to find

systematic mismodellings 9(J) = J',
that confuse NN classifiers

 These effects are subtle, remaining
undetected in control/validation
regions

* Susceptibility is reduced, but not
entirely, when using
fewer and higher-level inputs eI Nimrassion

What is Al Safety?

Relative Significance

High-dimensional uncertainties are
a real challenge tor deploying deep
networks on low-level features!

C. Shimmin and B. Nachman v’ We can all agree, we should try not to get murdered by robots



https://indico.cern.ch/event/809820/contributions/3632669/attachments/1971503/3279677/ml4jets_AI_safety.pdf

Machine Learning Inference and Interp.

It is now possible to unfold the “full phase space” i.e. all
of the 4-vectors and particle types in a single event !!

Single OmniFold instantiation vs. individual applications of |IBU
(IBU = iterative Bayesian unfolding, standard in ATLAS)

. L] ¥ L] L] L] 3.(’ Ll M v v v Ll Ll

! ot ! T 0.30 T -
0.06 ¢ 3 “Data 3 “Truth p [ “Data” D/T: Heawia 7.1.5 default I 1 “Data” D/T: Henrwic 7.1.5 default
Sim. ==+ (Gen. 0.25 F =3 “Truth” S/G: l'\";:nx‘.\' r-.".’-i:s tune 26 3 o5 3 “Iruth” S/.G: I'\-x\ - ;.M:i‘ tune 26
0.05 & BU M OmniFold 1 Derenes 3.4.2 CMS Detector . DeLpnes 3.4.2 CMS Detector
05} IBU ! s=—a OmniFold 7 Sim ) g Pogpagin ) Qi - . o
} ] olm, Z 4 het: pT > 200 GeV. Rt 0.4 s Z4 Jet: py > 200 GeV, R 04
0.04 D/T: Herwic 7.1.5 default 020F ==+ Gen. R 20F == Gen.
S § S/G: PyTHiA 8.243 tune 26 — I Inno =~ C(8=1
/ ne 2t IBU Inp R IBU 7.9 .
— 21

DeLries 3.4.2 CMS Detector

nnikF ’
Z+jet: p¥ > 200 GeV, R =04 ] OmniFold £ 1L5F w—a OmniFold

0.03

0.10 F 1.0F

0.02

Normalized Cross Section
o
—
Normalized Cross Section

Normalized Cross Section

0.01 F 0.05F

0.00 0.00

Iruth
i
~a
Ruti
Y
'$

T
|
t
1
T
?‘
{
> -
. b
| et
(B
rutl

i
o !
S o
L)

H_:‘.'. 10 Lo

0.85 F

. L . 13 i 1 L ‘l‘ : L . PR 1 1
0 20 40 60 S0 ~14 -12 ~10 —8 —6 -4 2 0.0 0.2 Uf'l 0.6 0.8 1.0 1.2
Jet Constituent Multiplicity M Soft Drop Jet Mass In p N-subjettiness Ratio (8=1
N-subjettiness Ratio 7,

'RC unsafe \RC safe Sudakoyv safe

P. Komiske, A. Andreassen, E. Metodiev, B. Nachman, J. Thaler



https://indico.cern.ch/event/809820/contributions/3632647/attachments/1971148/3279013/PTK_ML4Jets_NYC.pdf

Benchmarking

Included a live demo! Could
be used for future challenges
as well as tfor analysis in the
collaboration - can we
update all results at once it
e.qg. b-tagging is improved?

The Machine Learning Landscape of Top Taggers

Reproducible Open Benchmarks
for Data Analysis Platform

Kyle Cranmer, Irina Espejo,

Sebastian Macaluso, Heiko Mueller
New York University

Shih-Chieh Hsu, Aaron Maritz,
Ajay Rawat, Cha Suaysom

University of Washington
e —

(click this to see the slides)


https://indico.cern.ch/event/809820/contributions/3632640/attachments/1971191/3279096/ROB-ML4Jets.pdf

Applications and experimental methods

A

e Vertexing with graph networks

e Set to graph networks

* Mixture density networks for pixel clusters in dense

environments .
Elham E Khoda MDN: tracking in dense environments
| El'% | MDN: Performance (2-particle) e
e | g/
2-particle barrel clusters PoS (LHCP2019) 009
(Gaussian mixture e
model where mixture 1 § oo e Jlpniny
coefficients are NNs) e B St -

consistent with
standard normal
dist.

symmetric & 0.1
narrower

| "
............................................ | \ . ol FETTE PP PP FTee fee |
05-0.04-0.03-0.02-001 0 0.01 002 003 0.04 0.0 q5 -4 3 2 -1 0 1 2 3 4 5

Truth hit residual [mm) Truth hit pull

* Displaced jet tagging (next slide)


https://indico.cern.ch/event/809820/contributions/3632659/attachments/1971659/3280030/GNN_NYU_3_Jan_2020.pdf

Applications and experimental methods

Displaced jet tagging in CMS - very sophisticated!
high dimensional + decorelation

. YA Y : F;) - .
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no idea how to do signal uncertainties
... and they don't either

R. Bainbridge, for CMS



https://indico.cern.ch/event/809820/contributions/3632642/attachments/1971711/3280112/200117_ML4Jets_Bainbridge.pdf

There was a packed agenda with three
very full days of interesting talks!

| won't review every talk ... please take a look at
the slides for all the contributions and for details.
These slides are some personal highlights.
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