The Discovery of Parity Violation

Presented by Kenneth Vetter

The Discovery of Parity Violation

Presented by Kenneth Vetter

Overview

- Introduction
 - Symmetries
 - Discrete Symmetries
- Parity
 - A note on Mirror Images
 - Parity Conservation in EM
 - Wigner's About Conservation Laws
- Parity Violation and the Weak Force
 - Motivations
 - The Experiment
 - The Aftermath
- Future Explorations of Fundamental Symmetries in Physics

INTRODUCTION | SYMMETRIES

$$egin{aligned} \widehat{R}(\Delta heta, \hat{\mathbf{a}}) &= I - (-\Delta heta a_k arepsilon_{kij} r_j) rac{\partial}{\partial r_i} \ &= I - (\Delta heta a_k arepsilon_{kji} r_j) rac{\partial}{\partial r_i} \ &= I - \Delta heta \hat{\mathbf{a}} \cdot (\mathbf{r} imes
abla) \ &= I - rac{i \Delta heta}{\hbar} \hat{\mathbf{a}} \cdot \hat{\mathbf{L}} \end{aligned}$$

UNIVERSITY OF CALIFORNI

Noether's Theorem

If a property of a system has a continuous symmetry, then there are corresponding quantities whose values are conserved in time.

Why Symmetry?

Symmetries of a system govern its physics

- Quantum mechanics: generators
- Noether's Theorem: conservation of specific observables is connected to continuous symmetries of a system
- The Standard Model (We will come back to this later)

INTRODUCTION | DISCRETE SYMMETRIES

UNIVERSITY OF CALIFORNIA

Three Main Discrete Symmetries of Nature (not really)

INTRODUCTION | DISCRETE SYMMETRIES

Three Main Discrete Symmetries of Nature (not really)

LINIVERSITY OF CALIFORNIA

PARITY | OVERVIEW

A Quick Disclaimer

Parity is not quite the same as the "mirror image" we are used to thinking of

The mirror only flips the z direction, so a better description of a mirror is:

$M(x, y, z) = I(x, y) \otimes P(z) = (x, y, -z)$

NOTE: Spin is invariant under parity since it has the same algebraic structure as angular momentum. See Right.

PARITY | OVERVIEW

A Quick Disclaimer

Parity is *more* like looking into the concave side of a spoon, which flips x and z, however y still needs to be flipped!

*With this in mind, the idea of a mirror image is still useful for visualizing Parity Violation, so we will continue to use it as a visual aid

PARITY | OVERVIEW

Behavior of Systems under P

Objects (and operators) can be classified based on how they transform under Parity:

- Scalar Invariant under Parity
 Ex. Electric Charge, Mass
- Pseudoscalar Flips under Parity
 Ex. Magnetic Flux, "Magnetic Charge"
- Vector Flips under Parity
 Ex. Momentum, Velocity
- Pseudovector (or Axial Vector) Invariant under Parity
 - Ex. Angular Momentum, Spin, Magnetic Fields

Can extend to higher rank objects, but we won't need to

PARITY | PARITY IN ELECTROMAGNETISM

Maxwell's Equations under P

	P(LHS)	P(RHS)
$ abla \cdot {f E} = { ho \over {m arepsilon_0}}$	1 (V · V)	1 (S)
$\nabla \cdot \mathbf{B} = 0$	-1 (V · A)	1 (S) Ok because it's o
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	1 (V x V)	1 (A)
$ abla imes \mathbf{B} = \mu_0 \mathbf{j} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$	-1 (V x A)	-1 (V + V)

*Derivative is a vector operator (think momentum)

PARITY | PARITY IN ELECTROMAGNETISM

Maxwell's Equations under P

	P(LHS)	P(RHS)		
$ abla \cdot {f E} = { ho \over {m arepsilon_0}}$	1 (V · V)	1 (S)	P(LHS) = P(RHS)	
$\nabla \cdot \mathbf{B} = 0$	−1 (V · A)	1 (S) Ok because it's o	for all four!	
$ abla imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$	1 (V x V)	1 (A)	PARITY CONSERVATION	
$ abla imes \mathbf{B} = \mu_0 \mathbf{j} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$	-1 (V x A)	-1 (V + V)		

*Derivative is a *vector* operator (think momentum)

PARITY | WIGNER'S CONSERVATION POSTULATE

"The Conservation Laws in Quantum Mechanics" (1927)

Postulated that parity is *conserved* in nature

Group theoretic approach (of course)

"It was pretty obvious that, in addition to rotation, there is also reflection and I thought it was pretty obvious at that time that it's the LaPorte quantum number."

Recall LaPorte's selection rule for atomic transitions

PARITY | A FUNDAMENTAL LAW?

P conserved in EM, widely accepted to be conserved in quantum mechanics

Later, Strong Force is found to conserve P

Parity seems to be a fundamental symmetry of nature, as Wigner suggests, but...

MOTIVATION | THE θ - τ PROBLEM

In the days of old, there were thought to be two particles: θ and τ

Both particles had similar masses ~ 500 MeV

Pions are *pseudoscalar particles* thus the two final states have different parity.

Could these two particles be the same??

This would imply parity violation

$$\theta^+ \longrightarrow \pi^+ + \pi^0$$

 $\tau^+ \longrightarrow \pi^+ + \pi^+ + \pi^-$

MOTIVATION | THE θ - τ PROBLEM

In the days of old, there were thought to be two particles: θ and τ

Both particles had similar masses ~ 500 MeV

Pions are *pseudoscalar particles* thus the two final states have different parity.

Could these two particles be the same??

This would imply parity violation

Possible parity violation in weak force processes!

$$\theta^+ \longrightarrow \pi^+ + \pi^0$$

 $\tau^+ \longrightarrow \pi^+ + \pi^+ + \pi^-$

MOTIVATION | THE THEORY

1956 - Lee and Yang conduct a review of parity experiments previously conducted in the field

Found that parity conservation had not been tested in the weak sector

Proposed several possible experiments to answer the question

Tsung-Dao Lee (Left) and Chen Ning Yang (Right)

Chien-Shiung Wu

1956 - The Wu Experiment

Conducted during Columbia's Winter Break

Expert in Beta Decay Spectroscopy

Collaborated with Lee & Yang to design an experiment:

Tested the direction properties of Co-60 decay

Experimental Challenges

Needed to create extremely low-temperature conditions

Why? Cobalt nuclei have comparatively weak magnetic moments to electrons.

High magnetic fields needed to **align spins**. Low temps needed to overcome reduce thermal energy.

Low temps made use of **adabatic demagnetization**.

Idea of the experiment:

Nuclear spin is a *pseudovector* quantity

Step 1: Align all the spins of the nuclei

Step 2: Measure the direction of the emitted electrons

In the "Mirror Universe" the nuclear spin is the same, so there should not be a preferred direction of the beta particles (recall momentum is a *vector* quantity)...

Idea of the experiment:

Nuclear spin is a *pseudovector* quantity

Step 1: Align all the spins of the nuclei

Step 2: Measure the direction of the emitted electrons

In the "Mirror Universe" the nuclear spin is the same, so there should not be a preferred direction of the beta particles (recall momentum is a *vector* quantity)...

< COUNT NG RATE> WARM 20 ASYMMETRY (AT PULSE в HEIGHT IOV) RATE H, EXCHANGE 0 GASI IN COUNT NG 00 0.90 н 080 0.70 2 0 2 6 8 0 4 8 N M NUTES TIME

...BUT THERE IS!!

MOTIVATION | THE AFTERMATH

Resolving the θ – τ puzzle

$$K=u\overline{s}$$

Two particles are both in fact the K meson, which can be decomposed into two states:

"K-long" and "K-short"

FUTURE EXPLORATIONS OF FUNDAMENTAL SYMMETRIES IN PHYSICS

Natural Questions:

If *P* is violated, is *CP* conserved??

Spoiler alert: No.

If CP is not conserved, is CPT conserved??

Hopefully.

THANK YOU

