

Discovery of the tau lepton

Sai Neha Santpur 290E Spring 2020

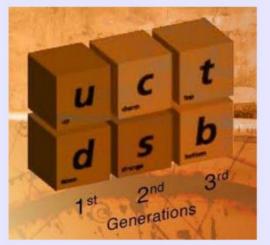
26 February 2020

Outline

- World in 1974
- Motivation to look for third generation leptons
- Discovery of the tau lepton
 - Mark I detector at SPEAR e+e- collider
 - Physics analysis
- Confirmation of tau discovery
- Tau research today

World in 1974

THE DISCOVERY OF THE TOP QUARK


Lina Galtieri (LBNL)

- Historical review of particle discoveries.
- Cosmic Rays gave the first information about particles beyond the electron and the proton.
- 1955:the first accelerators were developed by Lawrence, here at Berkeley(pbar discovered)
- 1960:the Hydrogen Bubble Chamber developed by L. Alvarez at LBL, allowed finding many particles.
- 1964: Gell-Mann and Zweig developed the quark model SU(3) Symmetry) to explain the existence of these particles.
- 1967-70 Glashow, Weinberg and Salam proposed the Standard Model
- 1973 Neutral Currents were found.

• 1974: The J/psi, bound state of c-c quarks is found

- 1975: the tau lepton was observed, confirmed in 1977
- 1977: the bottom quark is found
- 1995 : the top quark is found

The discovery of the top Quark: Lina Galtieri, Feb 5-2020

The building blocks of matter today. u, d, s and t are the ones LBL contributed the most.

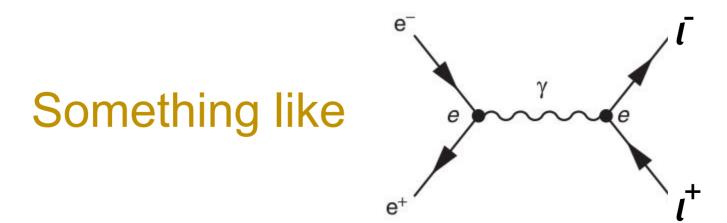
1

Feb 26, 2020

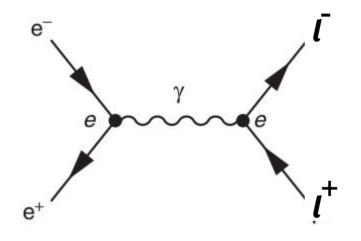
S. N. Santpur

Motivation for third generation of leptons

- Two leptons then:
 - Electron: m=0.5MeV, discovered in 1897
 - Muon: m=105MeV, discovered in 1937
- 1968-1974 time period
- The e-µ problem:
 - How does the muon differ from electrons?
 - Studies compared e-p vs. µ-p inelastic differential crosssections but did not show any anamolies. i.e. the muon interaction with hadrons was exactly similar to electron
 - Same is true for elastic scattering of e-p vs. μ-p
 - These results were not helpful in figuring out the differences between electron and muon
- Proposition(?):
 - May be there is another charged lepton out there that will explain what is different between electron, muon and this new lepton


S. N. Santpur

Varieties of leptons considered


- Sequential leptons (tau like lepton)
- Excited leptons
- Paraleptons
- Ortholeptons
- Long-lived particles
- Stable leptons

How to search for sequential leptons?

- Searches in particle beams
- Production of new leptons by e+e- annihilation
- Photoproduction of new leptons
- Production of new leptons in p p collisions
- Searches in lepton bremsstrahlung
- Searches in charged lepton-proton inelastic scattering
- Searches in neutrino-nucleon inelastic scattering

 $e^+ e^- \rightarrow \chi \rightarrow l^+ l^-$

 $\ell^- \to \nu_{\ell} + e^- + \bar{\nu}_e$ $\ell^- \to \nu_{\ell} + \mu^- + \bar{\nu}_{\mu}$

- Final state:
 - $I^+ \rightarrow e^+$ + neutrinos and $I^- \rightarrow \mu^-$ + neutrinos
 - $\circ~~I^{+} \rightarrow \mu^{+}$ + neutrinos and $I^{\scriptscriptstyle -} \rightarrow e^{\scriptscriptstyle -}$ + neutrinos
- Advantages:
 - Allows search up to m_1 = beam energy
 - Detecting e+µ- or e-µ+ with any missing energy would be dramatic
 - Clean final state with no other background

S. N. Santpur

Theory and other calculations..

- Detailed calculations of cross sections and decay branching modes and ratios were available as of 1971.
- Refer to Phys. Rev. **D4** 2821 for detailed calculations

Theory and other calculations..

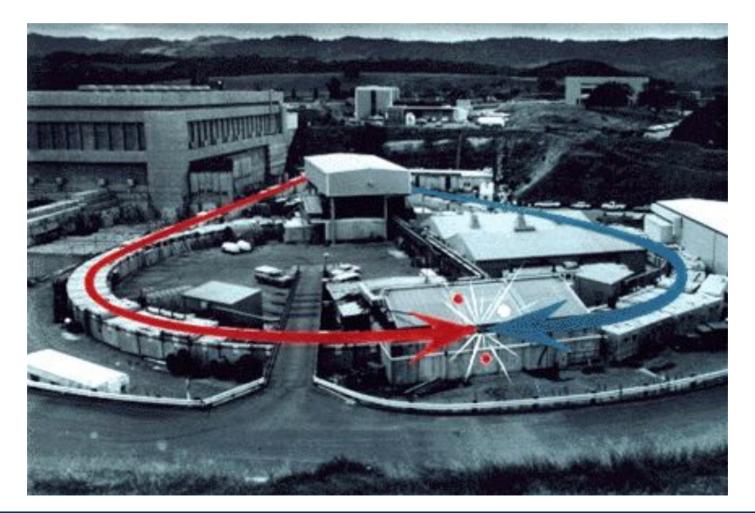

TABLE II. Partial and total decay	y lates of the	n valious	values of	M ₁ . Decay	1ate (10 5	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
M_l (GeV)	0.6	0.8	0.938	1.2	1.8	3.0	6.0
Decay mode							
$l \rightarrow \nu_l + \nu_e + e$	0.266	1.12	2.46	8.5	64.6	831	26 600
$\nu_l + \nu_\mu + \mu$	0.2	0.96	2.21	7.97	63	823	26 533
$\pi + \nu_1$	1.02	2.57	4.17	9.0	30	143	1145
$K + \nu_l$	0.0092	0.09	0.2	0.55	2.3	11.7	98
$\rho + \nu_l$	0	0.21	3.8	19	96	486	3900
$K^* + \nu_l$	0	0	0.03	0.96	6.3	33	280
$A_1 + v_1$	0	0	0	0.6	33.7	364	1550
$Q + v_t$	0	0	0	0	0.17	15.2	133
ν_l + hadron continuum	0	0	0	0.5	27	737	25 900
$l \rightarrow \nu + hadrons$	1.03	2.87	8.2	29.6	195	1790	33 006
Total rate	1.5	4.95	12.9	46.1	323	3444	85 539
Decay length in cm at $E_1 = 5$ GeV	16.5	3.73	1.2	0.26	0.024	•••	•••
Decay length in cm at $E_1 = 50 \text{ GeV}$	167	37.7	12.2	2.7	0.257	0.0145	•••

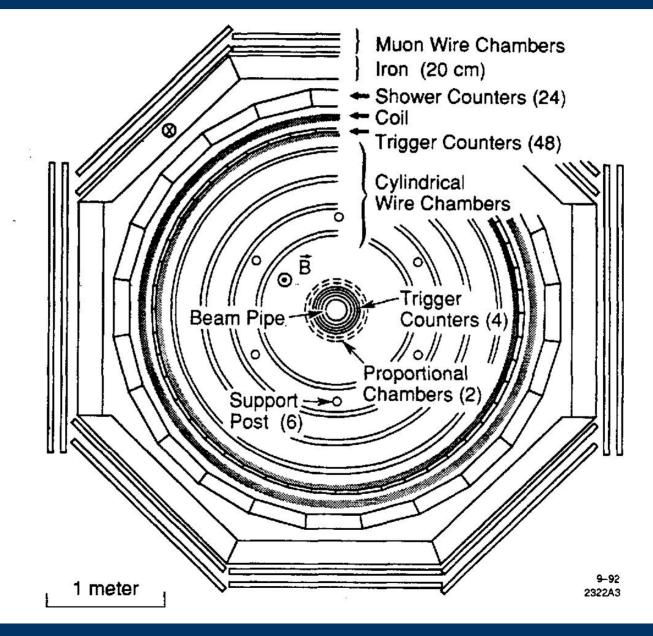
TABLE II. Partial and total decay rates of l for various values of M_1 . Decay rate $(10^{10} \text{ sec}^{-1}) = (\Gamma/\hbar) = 1/\tau$.

Feb 26, 2020

The discovery story

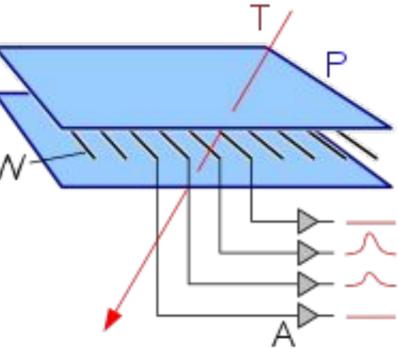
• The tau lepton was discovered using MARK I detector at SPEAR accelerator, SLAC in 1975

SPEAR accelerator


- SPEAR used to stand for Stanford Positron Electron Asymmetric Rings
- It consists of a ring 80m in diameter
- Electrons and positrons were circulated at energies up to 4 GeV (The dataset used for tau lepton discovery was at center-of-mass energy of 4.8 GeV)
- Two outstanding discoveries at SPEAR:
 - \circ J/ ψ (charmonium) in 1974
 - Tau lepton in 1975
- Since 1990, SPEAR is exclusively used for physics
- In fact it was the world's first synchrotron radiation laboratory

MARK I detector

- Also known as the SLAC-LBL Magnetic Detector
- First detector to have 4π hermetic coverage around the interaction point
- Made out of many layers of different subdetector systems Much like today's ATLAS and CMS
- Operational between 1973 1977
- J/ψ and tau lepton were discovered using this detector


MARK I detector

Feb 26, 2020

Charged particle detection

- Charged particle detection:
 - Used a 1.5 meter radius solenoid with 0.4 Tesla magnetic field
 - Cylindrical multiwire proportional chambers and spark chambers measure momenta and trajectories of charged particles
- Modern parallels:
 - Magnetic field ~ 2-4 T
 - Resistive plate, drift and thin gap chambers (think ATLAS muon detector)

ECAL and muon systems

- Electromagnetic calorimeter:
 - 24 lead-scintillator shower counters
 - Election ID:
 - Require that the shower energy be at least 0.5 GeV
 - Electron position in shower is determined by comparing pulse heights on photomultipliers at the two ends
 - Modern parallel:
 - ATLAS Lead-LAr electromagnetic calorimeter
- Muon chamber:
 - 20 cm thick iron flux return provides magnetic field for muon detection system (similar to today's CMS experiment)
 - Spark chambers are used for muon identification

Object selection for the analysis

- Electrons:
 - Charged particle
 - Required to have large pulse heights in the shower counters in the calorimeter
 - \circ $\,$ No deposit in the muon chamber $\,$
- Muons:
 - Depost in the muon chambers
 - Shower counter pulse should be small
- Hadrons:
 - All other charged particles are hadrons
- Photons:
 - Neutral particle
 - Large shower counter pulse
- Neutrinos: Infer their presence using missing energy

Event selection

- Dataset:
 - center of mass energy = 4.8 GeV
 - 9550 three-or-more-prong events
 - A large(!) number of two prong events which include $e+e- \rightarrow e+e-$, $e+e- \rightarrow \mu+\mu-$, $e+e- \rightarrow two$ -prong hadrons and $e+e- \rightarrow e+\mu-$, $e+e- \rightarrow e-\mu+$
- Coplanarity angle $\Theta_{copl} > 20^{\circ}$

$$\cos \theta_{\text{copl}} = -(\underline{n}_{1} \times \underline{n}_{e^{+}}) \cdot (\underline{n}_{2} \times \underline{n}_{e^{+}})/(|\underline{n}_{1} \times \underline{n}_{e^{+}}| |\underline{n}_{2} \times \underline{n}_{e^{+}}|)$$
(2)

where n_1 , n_2 , n_{e^+} are unit vectors along the directions of particles 1, 2, and the e⁺ beam. The contamination of events from the reactions e⁺e⁻ \rightarrow e⁺e⁻ and e⁺e⁻ \rightarrow $\mu^+\mu^-$ is greatly reduced if we require $\theta_{copl} > 20^{\circ}$.

Event selection

- Dataset:
 - center of mass energy = 4.8 GeV
 - 9550 three-or-more-prong events
 - $\circ~$ A large(!) number of two prong events which include e+e- $\rightarrow~$ e+e- , e+e- $\rightarrow\mu+\mu$, e+e- \rightarrow two-prong hadrons and
 - e+e- \rightarrow e+µ- , e+e- \rightarrow e-µ+
 - Coplanarity angle Θ_{copl} > 20° to reduce e+e- and μ+μ- final states
 - After this cut, we have 2493 two-prong events
- Electrons and muons: p_{τ} > 0.65 GeV
 - Electrons with pT<0.5 GeV are misidentified as pions >50% of the time due to small pulse height
 - Muons need at least pT>0.55 GeV to make it to the muon chamber
- Results in 513 two-prong events

S. N. Santpur

513 two-prong events in categories

	Tota	l Charge =	Total Charge = $\frac{1}{2}$ 2			
Number Photons =	0	1	> 1	0	l	> 1
ee	40	111	55	0	l	0
еµ	24	8	8	0	0	3
μμ	16	15	6	0	0	0
eh	20	21	32	2	3	3
μh	17	14	31	4	0	5
hh	14	10	30	10	4	6

Background?

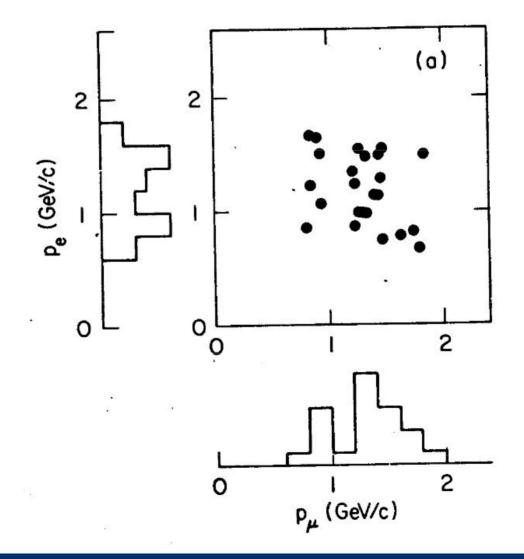
- Data: 24 emu events observed
- Can this be explained by any other known process?
 - e+e-→e+e-µ+µ- is a possible source but it is negligible
 - Claim: No. of emu events from this source with charge=+/-2 should be the same as no. of events in charge 0 eµ (Why?)

Background?

- Data: 24 emu events observed
- Can this be explained by any other known process?
 - e+e- → e+e- μ + μ is a possible source but it is negligible
 - Claim: No. of emu events from this source with charge=+/-2 should be the same as no. of events in charge 0 eµ (Why?)
 - \circ $\,$ Hadron misidentification or decay
 - Use 9550 three-or-more prong events assuming each of e/µ was fake
 - Use P(h→b) : probability of a fake lepton b from a hadron h. Note that this probability is momentum dependent.
 - Use the eh,µh and hh events in table on Slide 19 to get hadron momentum spectrum
 - Final result averaged over momentum: $P(h\rightarrow e)=0.183+/-.007$ and $P(h\rightarrow \mu)=0.198+/-0.007$

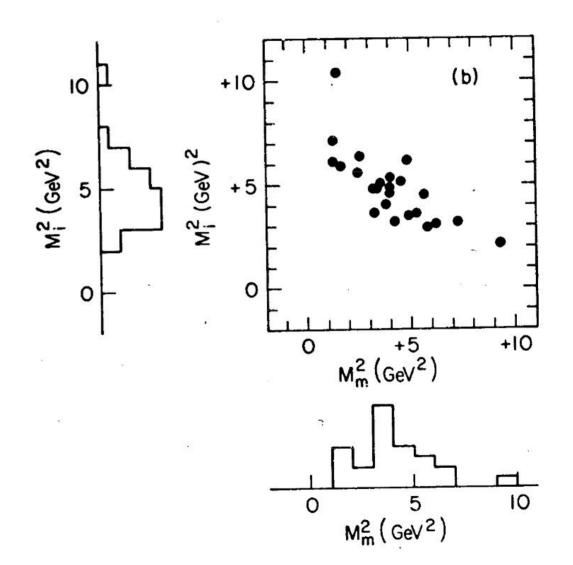
Background closure test

- Background estimation closure test:
 - To demonstrate that their misidentified backgrounds are estimated correctly, they apply same strategy to 1photon and >1photon category on Slide 19
 - Below table shows that the closure test works

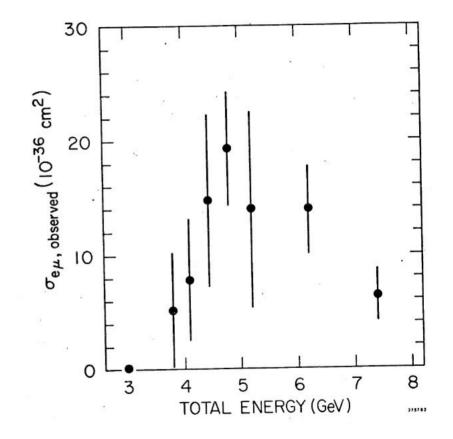

	eµ 1 photon channel	eµ >1 photon channel	
Predicted background (using same method)	5.6+/-1.5	8.6+/-2.0	
Observed events	8	8	

Final background yield

- Misidentified ee backgrounds 1+/-1
- Misidentified µµ backgrounds <0.3
- Misidentified hh backgrounds = 3.7 +/-0.6
- Total background = 4.7 + -1.2
- Observed no. of events = 24
- S/sqrt(B) ~ 5.1


Event kinematics

• Electron and Muon momentum


Invariant mass² vs. missing mass²

- At least two particles escaped detection
- If it was only one particle, then we should see one peak in M²_i
- In the paper, they note that this could be neutrons, K⁰ mesons or neutrinos

Observed cross section vs. center-of-mass energy

- Integrating over all center-of-mass energies,
 - Total background = 22
 - Total events observed = 86
 - S/sqrt(B) ~ 4

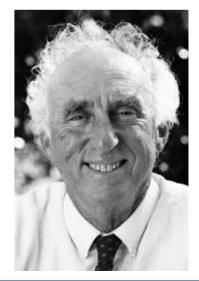
What could this new signature be?

- One explanation provided was pair production of heavy charged leptons (taus)
- Other one:
 - Pair production of charged boson with decays

 $B^{-} \rightarrow e^{-} + \bar{\nu}_{e}, B^{+} \rightarrow e^{+} + \nu_{e}, B^{-} \rightarrow \mu^{-} + \bar{\nu}_{\mu}, B^{+} \rightarrow \mu^{+} + \nu_{\mu}.$

- Charm quark theories predict such bosons
- They note that their mass (even if they exist) would probably be large enough that they won't see it at SPEAR

Tau lepton confirmation


- In 1977, it was confirmed that this excess was indeed from a tau lepton
 - \circ Observed excesses in e/µ events coming from

$$\ell^- \to \nu_\ell + e^- + \bar{\nu}_e$$
$$\ell^- \to \nu_\ell + \mu^- + \bar{\nu}_\mu$$

Excess in e-hadron events from

$$e^{+} + e^{-} \rightarrow \tau^{+} + \tau^{-}$$

$$\tau^{+} \rightarrow \bar{\nu}_{\tau} + e^{+} + \nu_{e}$$

$$\tau^{-} \rightarrow \nu_{\tau} + \text{hadrons}$$

Tau research today

- Precision standard model physics
 - Example:
 - BR(Higgs $\rightarrow \tau^+ \tau^-$)~6%
 - Observed at ATLAS and CMS. Find the ATLAS result <u>here</u>
- Handle to search for beyond standard model physics
 - Given that taus are third generation leptons and the heaviest, it can be used to search for "new" physics
 - Example: Find a search for stau (scalar tau) particle predicted in many supersymmetric theories <u>here</u>

Summary

- Tau lepton was discovered in 1975 using MARK I detector at SPEAR (e+e- collider)
- Confirmation of tau lepton followed in 1977 with the observation of more of tau decay modes
- Resulted in a Nobel prize in 1995 for Martin Perl
- These days, taus are an excellent handle to probe precision Standard Model physics and also a great tool to search for beyond standard model physics

References

- Main reference: <u>https://slac.stanford.edu/pubs/slacpubs/1500/slac-pub-1626.pdf</u>
- Chapter 9 from "The experimental foundations of particle physics" by Robert Cahn and Gerson Goldhaber
- Theory calculations: Phys. Rev. D4 2821 available at <u>https://journals.aps.org/prd/pdf/10.1103/PhysRevD.4.2821</u>
- PDG: <u>http://pdg.lbl.gov/2019/listings/rpp2019-list-tau.pdf</u>
- Historical note:

https://www.slac.stanford.edu/cgi-bin/getdoc/slac-pub-5937.pdf