
GRAPHS ALL THE WAY DOWN
DESIGNING GNN ARCHITECTURES FOR PARTICLE TRACKING

OVERVIEW

PART I: GNNs for Particle Tracking

1. Short review of tracking problem

2. GNN solution

3. A taste of some GNN architectures

PART II: ML Pipeline and Architecture Design with Graphs

1. The GNN Sandbox: A place for fun and games

2. DVC + Weights & Biases: Reproducible hyperparameter optimisation

3. ArchiOpTrX: A GNN-based Neural Architecture Search

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 2

PART I: GNNS FOR PARTICLE TRACKING

NEW PHYSICS NEEDS COLLISIONS…

• Higgs boson (LHC),

• Quarks (SLAC, Fermilab), and

• Neutrino mass (Super-Kamiokande)

• Supersymmetry,

• Composite Higgs,

• Dark matter,

• Leptoquarks,

• W/Z prime, and

• Axions

4

Discovered

with collisions

Could be

discovered

with collisions

… BUT COLLISIONS ARE MESSY

• High energy collisions bring huge

numbers of particles

(unfortunately)

• Want to see the particles coming

out of the collisions, which we

can get from the curves

(“tracks”) moving through a

magnetic field

5

… BUT COLLISIONS ARE

MESSY

THE “TRACKING PROBLEM”

OF NEW PHYSICS

• New physics requires high energy

and high precision

• This implies carefully tracking

millions of particles per event

through the (as-few-as-possible)

layers of a detector

• Each collision comprises of dozens

of events

• Each second produces tens of

millions of collisions

6

• New physics requires high energy

and high precision

• This implies carefully tracking

millions of particles per event

through the (as-few-as-possible)

layers of a detector

• Each collision comprises of dozens

of events

• Each second produces tens of

millions of collisions

7

THE “TRACKING PROBLEM”

OF NEW PHYSICS

THE “TRACKING PROBLEM” OF NEW PHYSICS

• New physics requires high energy

and high precision

• This implies carefully tracking

millions of particles per event

through the (as-few-as-possible)

layers of a detector

• Each collision comprises of dozens

of events

• Each second produces tens of

millions of collisions

8

A particle interacting

with a layer is a “hit”

9

We need a fast, high-

accuracy method to

connect hits into tracks to

determine the types and

energies of particles

coming out of every event

THE “TRACKING PROBLEM”

OF NEW PHYSICS

CURRENT TECHNIQUES WILL* NOT WORK ON NEXT-GEN COLLIDERS

*probably

10

Standard doom-and-gloom plot

In other words…

C
o

m
p

u
ti

n
g
 p

o
w

e
r

Time, Energy, Number of Collisions

Predicted

capacity

Traditional

methods

(scale quadratically)

2024 – 2026

14 TeV

6 Billion events/second

WE WANT TO BUILD TRACKS

1. Observe hits on layers

2. Join hits into track

3. Convert track into particle information

4. (Dis)prove supersymmetry

11

This is our focus

GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

• We have a collection of hits

• Want to “Connect the Dots” (the conference

name for this problem)

• A natural way is to represent the problem is as

a graph

12

TRACKS AS GRAPHS

• Graph is a collection of nodes, connected by edges

• Graph construction scales poorly, but is not the

bottleneck – it is a simple combinatorial process

• Graph prediction scales well – approximately as

O(e) with number of edges e

13

TRACKS AS GRAPHS

• Graph is a collection of nodes, connected by edges

• Graph construction scales poorly, but is not the

bottleneck – it is a simple combinatorial process

• Graph prediction scales well – approximately as

O(e) with number of edges e

14

TRACKS AS GRAPHS

• Graph is a collection of nodes, connected by edges

• Graph construction scales poorly, but is not the

bottleneck – it is a simple combinatorial process

• Graph prediction scales well – approximately as

O(e) with number of edges e

15

GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

16

Some toy

data…

x direction

y
d

ir
ec

ti
o

n

GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

17

Join the

hits in some

clever/dumb

way…
x direction

y
d

ir
ec

ti
o

n

GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

18

The tracks

should be

in here

x direction

y
d

ir
ec

ti
o

n

GRAPH INPUT FEATURES

• Can attach low-level or high-level features to each

node (i.e. hit)

GRAPH INPUT FEATURES

• Can attach low-level or high-level features to each

node (i.e. hit)

• Low level

• 𝑥, 𝑦, 𝑧

• 𝑟, 𝜙, 𝑧

• Higher level

• 𝜂

• Cell/cluster information

𝑥, 𝑦, 𝑧

GRAPH OUTPUT FEATURES

• Output depends on our question…

• Output as edge feature – score of each edge being true

0.9 0.2 0.1

0.2 0.9 0.3 0.9 0.2

GRAPH OUTPUT FEATURES

• Output depends on our question…

• Output as edge feature – score of each edge being true

• Output as node feature – track parameters of a track

associated to each hit

{𝑑0, 𝑧0, 𝜙0, 𝜂0,
𝑞0
𝑝0
} {𝑑1, 𝑧1, 𝜙1, 𝜂1,

𝑞1
𝑝1
} {𝑑2, 𝑧2, 𝜙2, 𝜂2,

𝑞2
𝑝2
}

{𝑑3, 𝑧3, 𝜙3, 𝜂3,
𝑞3
𝑝3
}

GRAPH OUTPUT FEATURES

• Output depends on our question…

• Output as edge features – score of each doublet being true

• Output as node features – track parameters of a track

associated to each hit

• Output as graph features – padded prediction of n tracks

and their parameters

23Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020

𝑑0, 𝑧0, 𝜙0, 𝜂0,
𝑞0
𝑝0

𝑑1, 𝑧1, 𝜙1, 𝜂1,
𝑞1
𝑝1

𝑑2, 𝑧2, 𝜙2, 𝜂2,
𝑞2
𝑝2

𝑑3, 𝑧3, 𝜙3, 𝜂3,
𝑞3
𝑝3

0
0
0
…

EDGE PREDICTION ARCHITECTURE

• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

x n iterations

(hyperparameter)

𝑥
𝑦
𝑧 0

EDGE PREDICTION ARCHITECTURE

• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

𝑥
𝑦
𝑧 0

ℎ1
…
ℎ𝑛

0

x n iterations

EDGE PREDICTION ARCHITECTURE

• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

x n iterations
ℎ1
…
ℎ𝑛

0

ℎ1
…
ℎ𝑛

1

ℎ1
…
ℎ𝑛

0,1

EDGE PREDICTION ARCHITECTURE

• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

x n iterations

0.6

ℎ1
…
ℎ𝑛

0,1

EDGE PREDICTION ARCHITECTURE

• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

x n iterations

0.6 0.4 0.1

0.4 0.9 0.1 0.8 0.8

EDGE PREDICTION ARCHITECTURE

• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

x n iterations

0.6 0.4

0.4 0.1 0.8

ℎ1 ℎ2

ℎ3 ℎ4 ℎ5

EDGE PREDICTION ARCHITECTURE

• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

x n iterations

+

ℎ1 ℎ2

ℎ3
ℎ5

ℎ4

ℎ1
…
ℎ𝑛

0

0.6 0.4

0.4 0.1 0.8

EDGE PREDICTION ARCHITECTURE

• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

x n iterations
ℎ1
…
ℎ𝑛

0

ℎ1
…
ℎ𝑛

1

ℎ1
…
ℎ𝑛

0,1

0.6

EDGE PREDICTION ARCHITECTURE

• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

x n iterations

0.9 0.2 0.1

0.2 0.9 0.3 0.9 0.2

ℎ1
…
ℎ𝑛

0,1

x n iterations

(hyperparameter)

EDGE PREDICTION PERFORMANCE

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

33Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020

EDGE PREDICTION PERFORMANCE

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

34Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020

EDGE PREDICTION PERFORMANCE

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

35Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020

EDGE PREDICTION PERFORMANCE

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

36Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020

EDGE PREDICTION PERFORMANCE

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

37Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020

EDGE PREDICTION PERFORMANCE

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

38Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020

EDGE PREDICTION PERFORMANCE

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

39Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020

EDGE PREDICTION PERFORMANCE

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

40Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020

Choose

threshold

for true

edges

e.g. 0.5

EDGE PREDICTION ARCHITECTURE

41

• Message Passing

• Attention Message

Passing

• Attention Message

Passing with Recursion

Recursive attention GNN

• ~ 43k parameters in Pytorch

• Trained on NVIDIA V100 GPU for ~ 60 epochs

• Binary logit loss function

• With “truth” cut-off of 0.7

• Edge efficiency: 95.2%

• Edge purity: 90.2%

42

EDGE PREDICTION PERFORMANCE

FROM DOUBLETS TO TRIPLETS…

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 43

WHY NOT SIMPLY JOIN TOGETHER OUR DOUBLET PREDICTIONS?

44

0.99

x1

x2

x3x4

0.01 0.99
D

is
ta

n
c
e

 f
ro

m

d
e

te
c
to

r
c
e

n
tr

e

Pretty easy

decision

DOUBLET CHOICE CAN BE AMBIGUOUS

45

0.99

x1

x2

x3x4

0.87 0.84
D

is
ta

n
c
e

 f
ro

m

d
e

te
c
to

r
c
e

n
tr

e

Not so easy…

so teach the network

how to combine

BUT A GNN DOESN’T KNOW ABOUT “TRIPLETS”

46

?

x1

x2

x3x4

D
is

ta
n

c
e

 f
ro

m

d
e

te
c
to

r
c
e

n
tr

e

A GNN only knows

about nodes

and edge
?

MOVING TO A

“DOUBLET GRAPH”

GIVES US BACK GNN

POWER

47

0.99

x1

x2

x3x4

0.87 0.84

Now…

nodes represent doublets,

edges represent triplets

x2x2

MOVING TO A

“DOUBLET GRAPH”

GIVES US BACK GNN

POWER

48

0.99

x1
x2

x3x4

0.87 0.84

Now…

nodes represent doublets,

edges represent triplets

x2x2() ()

()

THE TRIPLET CLASSIFIER RUNS WITH ALL THE BENEFITS OF THE

DOUBLET CLASSIFIER

• Aim is to beat all traditional methods of finding true
triplets

• Can then either continue to 4, 5, …-plets in order to
create and end-to-end GNN track builder…

• …or hand off the triplets as seeds to the traditional
techniques, knowing we can be confident in their
accuracy

49

TRIPLET GNN PERFORMS

VERY WELL

 Gold: Unambiguously correct triplet
or quadruplet

 Other colours: False
positive/negative

 Key:

 Silver: Ambiguously correct triplet or
quadruplet (i.e. edge shared by correct triplet
and false positive triplet)

 Bronze dashed: Correct triplet, but missed
quadruplet (i.e. edge shared by correct triplet
and false negative triplet)

 Red: Completely false positive triplet

 Blue dashed: Completely false negative
triplet

 Gold: Unambiguously correct triplet
or quadruplet

 Other colours: False
positive/negative

 Key:

 Silver: Ambiguously correct triplet or
quadruplet (i.e. edge shared by correct triplet
and false positive triplet)

 Bronze dashed: Correct triplet, but missed
quadruplet (i.e. edge shared by correct triplet
and false negative triplet)

 Red: Completely false positive triplet

 Blue dashed: Completely false negative
triplet

TRIPLET GNN PERFORMS

VERY WELL

TRIPLET GNN IMPROVES

DOUBLET GNN RESULTS

 Black: Triplet classifier correctly

labelled, doublet classifier

mislabelled

 Red: Doublet classifier correctly

labelled, triplet classifier

mislabelled

In this graph, triplet classifier

 Fixes 389 edges

 Worsens 10 edges

PART II: ML PIPELINE AND ARCHITECTURE DESIGN WITH GRAPHS

GNN SANDBOX

 Problem statement: There are many possible input/output node/edge/graph features, there are many GNN

architectures each working on different types of features, each architecture needs HPO to understand its

strength/weakness

 Would like to create a GNN sandbox – a pipeline that is modular and reproducible that can both manually and

automatically

1. Generate toy data / Load toy data

2. Generate a full GNN architecture

3. Train and evaluate the architecture

4. Optimise the hyperparameters

5. Compare between other architectures

6. Keep track of the hyperparameters, model architecture, weights, metrics, performance, input/output data, … everything, so that any of
these can be tweaked or optimised further with no extra coding/work

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 54

TOO MANY GNNS TO

CODE BY HAND

• In 2019, approx. 1 GNN

paper every two days

• Presumably will increase in

2020

• Google Trend of “Graph

neural network” shows year-

by-year increase

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 55

Generate toy data
/ Load toy data

1

Generate a full
GNN architecture

2

Train and
evaluate the
architecture

3

Optimise the
hyperparameters

4

Compare
between other
architectures

5

Keep track of the
hyperparameters, model
architecture, weights,
metrics, performance,
input/output data, …
everything

6

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 56

DVC

ArchiOpTrkX
Weights & Biases

Sandbox

1. GENERATE / LOAD DATA

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 57

1. GENERATE / LOAD DATA

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 58

2. AN ATTEMPT TO GENERATE GNN ARCHITECTURE

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 59

2. AN ATTEMPT TO GENERATE GNN ARCHITECTURE

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 60

These are

defined in

a dictionary

of methods

archConfig.yaml

Number of node convolutions

Number of node poolings

Number of edge convolutions

Number of edge poolings

Number of graph convolutions

Number of graph poolings

2. AN ATTEMPT TO GENERATE GNN ARCHITECTURE

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 61

The GNN is generated from the dropdown

boxes, or loaded from a “sketch” file.

e.g. steve_model.yaml

1. States a pipeline

with user-defined

labels

2. Associates those

labels with the

dictionary of function

3. Handles any exceptional

behaviour (e.g. loops)

2. AN ATTEMPT TO GENERATE GNN ARCHITECTURE

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 62

The GNN is generated from the dropdown

boxes, or loaded from a “sketch” file.

e.g. steve_model.yaml

1. States a pipeline

with user-defined

labels

2. Associates those

labels with the

dictionary of function

3. Handles any exceptional

behaviour (e.g. loops)

These are

defined in

a dictionary

of classes

3. TRAIN & EVALUATE THE MODEL

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 63

Sketch.yaml

+

Dictionary of methods

PyTorch Network

3. TRAIN & EVALUATE THE MODEL

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 64

PyTorch Network

PyTorch Training +

Evaluation

Nothing special here…

Generate toy data
/ Load toy data

1

Generate a full
GNN architecture

2

Train and
evaluate the
architecture

3

Optimise the
hyperparameters

4

Compare
between other
architectures

5

Keep track of the
hyperparameters, model
architecture, weights,
metrics, performance,
input/output data, …
everything

6

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 65

DVC

ArchiOpTrX
Weights & Biases

Sandbox

4. OPTIMISE HYPERPARAMETERS WITH WEIGHTS & BIASES (W&B)

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 66

Preface with…

1.

2.

3.

4.

5.

Initialise W&B

Watch model (weights & gradients)

Log metrics of interest

Define sweep agent

Run sweep

WEIGHTS & BIASES PROPAGANDA SLIDE

 Wandb.ai

 “Those who don't track training are

doomed to repeat it.”

 Hard workers – have made 5 or 6

suggestions to them, and most were

quickly implemented

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 67

4. OPTIMISE HYPERPARAMETERS WITH WEIGHTS & BIASES (W&B)

 Sweeps compare HPO results

 W&B is an amazing metric/weights/gradients tracker and visualiser, and a standard HPO platform (implements

Ray’s Tune library)

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 68

An HPO sweep for

doublet classification

5. COMPARE ARCHITECTURES

 W&B can be used to compare between sweeps

 W&B can do discrete Bayesian optimisation over architectures (but this doesn’t really work well in practice)

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 69

Generate toy data
/ Load toy data

1

Generate a full
GNN architecture

2

Train and
evaluate the
architecture

3

Optimise the
hyperparameters

4

Compare between
other architectures

5

Keep track of the
hyperparameters, model
architecture, weights,
metrics, performance,
input/output data, …
everything

6

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 70

DVC

ArchiOpTrX
Weights & Biases

Sandbox

6. TRACK EVERYTHING

 W&B tracks every element of a model:

 Metrics

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 71

6. TRACK EVERYTHING

 W&B tracks every element of a model:

 Metrics

 Gradients + weights

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 72

6. TRACK EVERYTHING

 W&B tracks every element of a model:

 Metrics

 Gradients + weights

 Model architecture

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 73

6. TRACK EVERYTHING

 W&B tracks every element of a model:

 Metrics

 Gradients + weights

 Model architecture

 Terminal logs

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 74

6. TRACK EVERYTHING

 W&B tracks every element of a model:

 Metrics

 Gradients + weights

 Model architecture

 Terminal logs

 Performance

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 75

6. TRACK EVERYTHING

 W&B tracks every element of a model:

 Metrics

 Gradients + weights

 Model architecture

 Terminal logs

 Performance

 Not reproducible, per se

 Need Data (and model) Version Control (DVC)

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 76

DVC PROPAGANDA SLIDE

 DVC.org

 A full model & data

versioning solution

 Excellent tutorials

 Also work very hard

 Pretty reliable

Google Drive API

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 77

Generate toy data
/ Load toy data

1

Generate a full
GNN architecture

2

Train and
evaluate the
architecture

3

Optimise the
hyperparameters

4

Compare between
other architectures

5

Keep track of the
hyperparameters, model
architecture, weights,
metrics, performance,
input/output data, …
everything

6

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 78

DVC

ArchiOpTrX
Weights & Biases

Sandbox

6. TRACK EVERYTHING

Pipeline is thus:

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 79

•Hand
engineer,
(or)

•Naïve layer
builder

Define
architecture

•DVC wraps
W&B

•W&B HPO
wraps
PyTorch
train/eval

dvc run:
wandb run

sweep

Sends all
model/

pipeline info
to Google

Drive

git commit

dvc push

Model
versions

controlled
and

visualisable

Checkout
with DVC,
inspect in

W&B

dvc repro

2. GENERATE GNN ARCHITECTURE

 Linear pipeline is not a good representation for a GNN

 C.f. Relational Inductive Biases, Deep Learning, and Graph Networks [Battaglia et al., 2018, Google DeepMind +

Brain + U of Edinburgh]

 Google paper uses “blocks”, where each block contains a flow of one node, edge and graph function

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 80

REDUX: GRAPHS ALL THE WAY DOWN

2. GENERATE GNN ARCHITECTURE

 ML Network as computations graph, e.g. GNN Attention Model

 Neural Architecture Search Over a Graph Search Space [Jastrzebski et al., 2019, Google AI]

 Suggests graph representation can be optimised better than linear representation

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 81

REDUX: GRAPHS ALL THE WAY DOWN

Linear representation

Graph representation

Data node

Function node

2. GENERATE GNN ARCHITECTURE

 ML Network as computations graph, e.g. GNN Attention Model

 Neural Architecture Search Over a Graph Search Space [Jastrzebski et al., 2019, Google AI]

 Suggests graph representation can be optimised better than linear representation

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 82

REDUX: GRAPHS ALL THE WAY DOWN

Linear representation

Data node

Function node

Graph representation

NodeNet

EdgeNet

2. GENERATE GNN ARCHITECTURE

 New plan: generate GNN architecture as a computation graph

 Obvious problem: Cannot arbitrarily connect data-function-data

 To choose the structure of the graph, walk through a function graph

 As we walk through function graph, we are constructing the

computation graph

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 83

REDUX: GRAPHS ALL THE WAY DOWN

Example function graph

ARCHITECTUREOPTIMISATION(WITH/FOR)TRACKX: ARCHIOPTRX

1. Define sources and targets (e.g. source: node data, target: edge data)

2. Start random walk in function graph at source node

3. From data nodes, randomly choose a child function

4. From function nodes, proceed to child data

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 84

ARCHITECTUREOPTIMISATION(WITH/FOR)TRACKX: ARCHIOPTRX

1. Define sources and targets

(e.g. source: node features, target: edge features)

2. Start random walk in function graph at source node

3. From data nodes, randomly choose a child function

4. From function nodes, proceed to child data

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 85

Node

Feats 1

function graph

computation graph

Node

MLP 1

Node

Feats 2

Edge

Concat 1

Edge

Feats 1

Edge

MLP 1

Edge

Feats 2

X% chance of

accepting target

ARCHITECTUREOPTIMISATION(WITH/FOR)TRACKX: ARCHIOPTRX

1. First pass track (could be good enough)

2. Then, can add subsequent tracks with Y% percent likelihood,

randomly choosing a new source/target. E.g. recurrence:

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 86

Node

Feats 1 function graph
Node

MLP 1

Node

Feats 2

Edge

Concat 1

Edge

Feats 1

Edge

MLP 1

Edge

Feats 2

Node

Feats 1

Node

MLP 1

Node

Feats 2

Edge

Concat 1

Edge

Feats 1

Edge

MLP 1

Edge

Feats 2

Edge

Sum 1

Node

Feats 3

loop

HANDLING MULTI-INPUT FUNCTIONS

 What happens when we reach a function that has # parents > 1

 We reverse random walk – follows the exact prescription of regular

walk but with source target

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 87

Node

Feats 1

function graph

computation graph

Node

MLP 1

Node

Feats 2

Edge

Concat 1

Edge

Feats 1

Edge

Attention

1

Node

Feats 3

Node

Feats 4

ARCHIOPTRX RANDOM GENERATION WORKS

With function graph pictured, we get with source=node, target=edge:

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 88

First pass track

ARCHIOPTRX RANDOM GENERATION WORKS

With function graph pictured, we get with source=node, target=edge:

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 89

Two track iterations

ARCHIOPTRX: PLUGGING INTO PIPELINE

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 90

Function
graph

random
walk

Architecture
generation

Given the
full archit-

ecture

Generate
hyperpar-
ameters

•DVC
wraps
W&B

•W&B HPO
wraps
PyTorch
train/eval

dvc run:
wandb
run

sweep

Sends all
model/
pipeline
info to
Google
Drive

git commit

dvc push

Model
versions

controlled
and

visualisabl
e

Checkout
with DVC,
inspect in

W&B

dvc repro

NEXT STEP

 RNN Reinforcement Learning controller for function graph walk

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 91

BACKUP

2/5/2020DANIEL MURNANE NERSC & FRIENDS TALK 92

ASIDE: QUICK

NOTATION

• Recall ≡ Efficiency

• Precision ≡ Purity

93

