GRAPHS ALL THE WAY DOWN

DESIGNING GNN ARCHITECTURES FOR PARTICLE TRACKING

OVERVIEW

PART I: GNNSs for Particle Tracking
1. Short review of tracking problem
2. GNN solution

3. Ataste of some GNN architectures

PART II: ML Pipeline and Architecture Design with Graphs

1. The GNN Sandbox: A place for fun and games

2. DVC + Weights & Biases: Reproducible hyperparameter optimisation
3. ArchiOpTrX: A GNN-based Neural Architecture Search

= W
reeece]| |l : A WA
/\m BERKELEY LAB i\@?}»»;(wx DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020

PART I: GNNS FOR PARTICLE TRACKING

ﬁr\lﬂ BERKELEY LAB

NEW PHYSICS NEEDS COLLISIONS...

Higgs boson (LHC),
Quarks (SLAC, Fermilab), and

Neutrino mass (Super-Kamiokande)

* Supersymmetry,
- Composite Higgs,
- Dark matter,

* Leptoquarks,

- W/Z prime, and

 Axions

Discovered
with collisions

Could be
discovered
with collisions

/?lﬂ BERKELEY LAB

¥ TrkX

... BUT COLLISIONS ARE
MESSY

« High energy collisions bring huge
numbers of particles
(unfortunately)

- Want to see the particles coming
out of the collisions, which we
can get from the curves
(“tracks”) moving through a
magnetic field

THE “TRACKING PROBLEM”
OF NEW PHYSICS

New physics requires high energy
and high precision

This implies carefully tracking
millions of particles per event
through the (as-few-as-possible)
layers of a detector

Each collision comprises of dozens
of events

Each second produces tens of
millions of collisions

-~

rrrrrr

W Trkx

THE “TRACKING PROBLEM”
OF NEW PHYSICS

New physics requires high energy
and high precision

This implies carefully tracking
millions of particles per event
through the (as-few-as-possible)
layers of a detector

Each collision comprises of dozens
of events

Each second produces tens of
millions of collisions

-~

rrrrrrrr

THE “TRACKING PROBLEM” OF NEW PHYSICS

New physics requires high energy
and high precision

A pa rti C I e i nte ra Cti n g - This implies carefully tracking

millions of particles per event
through the (as-few-as-possible)

With a Iayer iS a “hit” | layers of a detector

Each collision comprises of dozens
of events

Each second produces tens of
millions of collisions

/'\m BERKELEY LAB k\p:ngfw kX 8

f\] ' BERKELEY LAB

THE “TRACKING PROBLEM”
OF NEW PHYSICS

We need a fast, high-
accuracy method to
connect hits into tracks to
determine the types and
energies of particles
coming out of every event

CURRENT TECHNIQUES WILL* NOT WORK ON NEXT-GEN COLLIDERS

Standard doom-and-gloom plot

Traditional

g aaseiemmny methods
< 100~ cpPU resource needs] (scale quadratically)
s B v .
3 802018 estimates: —— ()]
E ~ ¥ MC fast calo sim + standard reco ; - <
2 ~ * MC fast calo sim + fast reco s T] (@) _ ;
8 60_—‘ Generators speed up x2 k. o | I > o 2024 - 2026 |
E L o o | 00 14 TeV '

-— Flat budget model v e e - (- HIR '
% (+20%/year) i s P d In other words... S 6 Billion events/second :
e 0L I a
< Run 2 Run 3 / ®./Rund Run5 | o

o N & Predicted

20 o .
B]) capacity
= 16 i b g e Logwg l e g v e pliwa g i
g 2018 2020 2022 2024 2026 2028 2030 2032
Year >
Time, Energy, Number of Collisions
*probably

/\]ﬂ BERKELEY LAB 10

WE WANT TO BUILD TRACKS

1. Observe hits on layers

2. Join hits into track

3. Convert track into particle information

4. (Dis)prove supersymmetry

I P

““I BERKELEY LAB P KTk

This Is our focus

11

GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

 We have a collection of hits

* Want to “Connect the Dots” (the conference
name for this problem)

* A natural way is to represent the problem is as
a graph

I P

““I BERKELEY LAB P KTk 12

TRACKS AS GRAPHS

- Graph is a collection of nodes, connected by edges

« Graph construction scales poorly, but is not the
bottleneck - it is a simple combinatorial process

« Graph prediction scales well - approximately as
O(e) with number of edges e

B W)
X\\:nj\/ frix

ke

:r\lﬂ BERKELEY LAB

13

TRACKS AS GRAPHS

* Graph is a collection of nodes, connected by edges

- Graph construction scales poorly, but is not the
bottleneck - it is a simple combinatorial process

« Graph prediction scales well - approximately as
O(e) with number of edges e

:r\lﬂ BERKELEY LAB

ke

B W)
X\\:nj\/ frix

14

TRACKS AS GRAPHS

* Graph is a collection of nodes, connected by edges

« Graph construction scales poorly, but is not the
bottleneck - it is a simple combinatorial process

- Graph prediction scales well - approximately as
O(e) with number of edges e

~ o J;
rereer] 0] AT AT
Il BERKELEY LAB i\w?}*/”kx

15

GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

A S Some toy
data...

y direction

x direction

16

~
AR
eereer| i PR T
“IN BERKELEY LAB R T

GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

Join the
hits In some
clever/dumb

way...

y direction

x direction

17

e P

/?lﬂ BERKELEY LAB

y direction

/r\lﬂ BERKELEY LAB

GRAPHS ARE A NATURAL WAY TO REPRESENT TRACKS

x direction

The tracks
should be
IN here

18

GRAPH INPUT FEATURES

- Can attach low-level or high-level features to each
node (i.e. hit)

= s A ,fl
“ | BERKELEY LAB = A e

GRAPH INPUT FEATURES

« Can attach low-level or high-level features to each
node (i.e. hit)

* Low level
xX,¥,Z
r,¢,z

« Higher level

n

Cell/cluster information

rereer]||u R AN
/\]ﬂ BERKELEY LAB P Tk

WA

GRAPH OUTPUT FEATURES

o)

.9 0.2 0.1
Output depends on our question...
Output as edge feature - score of each edge being true

0.2 0.90.3090.2

U

= s A ,fl
“ | BERKELEY LAB = A e

GRAPH OUTPUT FEATURES

« Qutput depends on our question...

* Output as edge feature - score of each edge being true

- QOutput as node feature - track parameters of a track

associated to each hit ¢
{d3!Z3! ¢31 U3:p_z}

q q qz
{do, 2o, ¢0’770’_0} {d1,Z1.¢1,T]1,—1} {d2, 25, b2, 13,
Po p1 p

2

}

= s A ,fl
“ | BERKELEY LAB = A e

GRAPH OUTPUT FEATURES

* Output depends on our question...
« QOutput as edge features - score of each doublet being true

« Output as node features - track parameters of a track
associated to each hit

« Output as graph features - padded prediction of n tracks
and their parameters

dO! Zy, ¢0' No,

dq,21, 1,01,

d2! Z3, ¢2' n2,

qo7

Po
q1

p1
qz

P2
qs

d3! Z3, ¢3' N3, —

P3

I serkmeytag Murnane ™ LBNL ATLAS Annual Meeting

January 7t 2020 23

EDGE PREDICTION ARCHITECTURE

* Input node features

« Hidden node features

* Hidden edge features

- Edge score

* Attention aggregation

* New hidden node features
* New hidden edge features

* New edge score

reeecr][n e B NR Y
/\]ﬂ BERKELEY LAB P Tk

X n iterations
(hyperparameter)

EDGE PREDICTION ARCHITECTURE

* |nput node features
- Hidden node features

* Hidden edge features

- Edge score

« Attention aggregation

* New hidden node features
_ X n iterations
* New hidden edge features

* New edge score

~
eereer| i PR T
/\lﬂ BERKELEY LAB P Tk

EDGE PREDICTION ARCHITE

* |Input node features
« Hidden node features

- Hidden edge features

- Edge score

* Attention aggregation

* New hidden node features
* New hidden edge features

* New edge score

“|| BERKELEY LAB B wa

EDGE PREDICTION ARCHITECTURE

* |nput node features
« Hidden node features
* Hidden edge features

- Edge score

* Attention aggregation

* New hidden node features
_ X n iterations
* New hidden edge features

* New edge score

O

Fa ’
eereer| i PR T
/\lﬂ BERKELEY LAB P Tk

EDGE PREDICTION ARCHITECTURE

* |nput node features /‘
04 0.1

« Hidden node features 6

* Hidden edge features >
- Edge score
* Attention aggregation
* New hidden node features
X n iterations

« New hidden edge features
e ge featu 0.4 090108 0.8

U

* New edge score

-~ Yo AR ,"" I
reeeere ||l L% f-'/é LR
/\]ﬂ BERKELEY LAB P Tk

EDGE PREDICTION ARCHITECTURE

* |nput node features

« Hidden node features

&
6 0.4

* Hidden edge features >
- Edge score
« Attention aggregation
* New hidden node features
X n iterations

* New hidden edge features /
0.4 0.1 0.8

']

* New edge score

f\lﬂ BERKELEY LAB I P Trkx

EDGE PREDICTION ARCHITECTURE

« Hidden node features

0
« Input node features /T/
0.4

0.6

* Hidden edge features
- Edge score

« Attention aggregation

New hidden node features

_ X n iterations
* New hidden edge features /
0.4 0.1 0.8

* New edge score

/\lﬂ BERKELEY LAB - ;&J’Trkx

EDGE PREDICTION ARCHITE

* |Input node features

« Hidden node features

* Hidden edge features

- Edge score

* Attention aggregation

* New hidden node features
* New hidden edge features

* New edge score

“|| BERKELEY LAB B wa

O

EDGE PREDICTION ARCHITECTURE

0
« Input node features /TJ

- Hidden node features 02 0.1

* Hidden edge features

- Edge score

« Attention aggregation

* New hidden node features
X n iterations

(hyperparameter) 0.2 0.90.23090.2

B,

* New hidden edge features

* New edge score

~
eereer| i PR T
/\lﬂ BERKELEY LAB P Tk

[fake
1 true
109 4 |
a1 02 04 0.6 0.8
Model output
: Edges with higher scores are darker than that with lower scores

rrrrr

Edges with scores < 0.01 are removed for visualization purpose.

[fake
10° 1 1 true

104 E
103 .H”
102 1
10' 1

100 ;

10-1 v v v v
0.0 0.2 0.4 0.6 0.8

Model output

: Edges with higher scores are darker than that with lower scores

""" Edges with scores < 0.01 are removed for visualization purpose.

\ AR [fake
A ."| 07 10° 1 1 true

- NN Y ' \ { [} / s
s g ,‘ .A‘ 3 '] / [A
SO L e (/) ¥,
~a = \ X\ . v.-'/ . 104 -

~ \ / : i " s A
s A NS L) I ATGIA 103

g /l, ,, -
- ~ ’/' o
= -— S=yy I »/ - o
T — \\\\ ,é" 5 / &5 ” //
= X /; -_ e
— y ' =
- 107 1

29 AIBRTS ===}

I f VAL T RN DN R 0.0 0.2 0.4 0.6 0.8
{1 AR AR Model output

: Edges with higher scores are darker than that with lower scores

""" Edges with scores < 0.01 are removed for visualization purpose.

1.0

[fake
[true
0.8

0.6
Model output

0.4

0.2

0.0

= B WP N\ 'y ik
- N oY %
\ X)
———— \ RN\ AR, \
D) K) o
- - p VN o~ ? LN -4’ X f
. —— e RN |
- 3 N SN A Ve
— , Sy J
.)

.

T
2 ‘\~)TN

/a/ ..|....h.-/ .0/'1 :
ﬂ.//,// =2

- > -~ T— —~
o —- L~ . S A o
- . L < X -~ - -
i | &5 ES 21BN e N
2 ~ s : 4 T -
= e 77 N i | g 3 A - e i
= =3 T) \ = . -
- - - o / s \ / >
-5 A / / | -, -
- - ~ < y \, R <

o

Edges with higher scores are darker than that with lower scores
Edges with scores < 0.01 are removed for visualization purpose.

R

105 o

104 4

103 §

102 .

101 4

100 §

10-1 ' : : :
0.0 0.2 0.4 0.6 0.8 1.0

Model output

: Edges with higher scores are darker than that with lower scores
""" Edges with scores < 0.01 are removed for visualization purpose.

B [fake
105 4 [true

104 ;

103 ;

0.0 0.2 0.4 0.6 0.8 1.0
Model output

: Edges with higher scores are darker than that with lower scores
""" Edges with scores < 0.01 are removed for visualization purpose.

E [fake
10° 1 [true
104 A
103
102
10?1
100 o
10-1 . ' . .

0.0 0.2 0.4 0.6 0.8

Model output

: Edges with higher scores are darker than that with lower scores
""" Edges with scores < 0.01 are removed for visualization purpose.

[fake
[true

Choose

'threshold
' for true
 edges

e.g. 0.5

0.0 0.2 04 ' 06 0.8 1.0

Model 1'>utput
|

Edges with higher scores are darker than that with lower scores
Edges with scores < 0.01 are removed for visualization purpose.

EDGE PREDICTION ARCHITECTURE

[Ho. Ho] [H1. Ho] [Hi]

Input Graph Graph Output
m_’ Net\?vork - Netw%rk Netw%rk Netv\?ork "{] l

Message Passing

(o | IR [voowwe | [oo - - [N —

Attention Message
Passing

Ho, X H,, X
[o X1_[Wol _[Fh, X] Attention Message
Passing with Recursion

] flmes

[Ho, X] [wo] [Hi, X] [w+] [Hi X] [W.l [[

= pem g/
reeeere ||l b AR
/\]ﬂ BERKELEY LAB P Tk

EDGE PREDICTION PERFORMANCE

. = e
e | Recursive attention GNN

« ~ 43k parameters in Pytorch
o . Trained on NVIDIA V100 GPU for ~ 60 epochs
1073)‘—\w‘_ljﬁff—f - Binary logit loss function
10" ; « With “truth” cut-off of 0.7
Lo - Edge efficiency: 95.2%

Edge purity: 90.2%

e 02 0.4 06 058 10

Model output

= - v
“ | BERKELEY LAB = A e

FROM DOUBLETS TO TRIPLETS...

“|| BERKELEY LAB DANIEL MURNANE

NERSC & FRIENDS TALK

2/5/2020

43

WHY NOT SIMPLY JOIN TOGETHER OUR DOUBLET PREDICTIONS?

Pretty easy
decision

Distance from
detector centre

S P

“IN BERKELEY LAB P K T Lk

DOUBLET CHOICE CAN BE AMBIGUOUS

X3

E S 0.84
E g Not so easy...
D
= S X, SO teach the network

O .
2 g how to combine

© 0.99

Xl

S P

“ perkeLey LaB = 45

BUT A GNN DOESN’T KNOW ABOUT “TRIPLETS”

£ S

E g A GNN only knows
(D)

§ g about nodes

L § and edge

S P

“IN BERKELEY LAB P M KTk 46

MOVING TO A
“DOUBLET GRAPH”
GIVES US BACK GNN
POWER

Now...
nodes represent doublets,
X, edges represent triplets

/:\lﬂ Y ¥ J/T kX
BERKELEY LAB D T 47

MOVING TO A ())22) ;((2
“DOUBLET GRAPH” 4 o4
GIVES US BACK GNN

POWER

(%)
X2
99 Now...

nodes represent doublets,
edges represent triplets

- N
f\lﬂ BERKELEY LAB I P Trkx 48

THE TRIPLET CLASSIFIER RUNS WITH ALL THE BENEFITS OF THE
DOUBLET CLASSIFIER

* Aim is to beat all traditional methods of finding true
triplets

« Can then either continue to 4, 5, ...-plets in order to
create and end-to-end GNN track builder...

* ...0r hand off the triplets as seeds to the traditional
techniques, knowing we can be confident in their
accuracy

I P

““I BERKELEY LAB P KTk 49

.
-
— 5.
3
A

o
-
-
-
-
-
-
-
-
-
-
-/
o
-

TRIPLET GNN PERFORMS

/?lﬂ BERKELEY LAB

Gold: Unambiguously correct triplet
or quadruplet

200 - = '*:‘ l'. g

Other colours: False : h
positive/negative i S
Key: }

= =3 _,‘f- -l!
Silver: Ambiguously correct triplet or P 5 5
quadruplet (i.e. edge shared by correct triplet S — 2
and false positive triplet) 200 33 e -
Bronze dashed: Correct triplet, but missed ’_.;i-" ’
quadruplet (i.e. edge shared by correct triplet o
and false negative triplet) R =
Red: Completely false positive triplet -400 4 '
Blue dashed: Completely false negative D
triplet S a3

..r""
-600

VERY WELL

~z,

TRIPLET GNN PERFORMS |

VERY WELL

= Gold: Unambiguously correct triplet
or quadruplet

= QOther colours: False
positive/negative

= Key:

= Silver: Ambiguously correct triplet or
quadruplet (i.e. edge shared by correct triplet
and false positive triplet)

= Bronze dashed: Correct triplet, but missed
quadruplet (i.e. edge shared by correct triplet
and false negative triplet)

= Red: Completely false positive triplet

= Blue dashed: Completely false negative
triplet

/?lﬂ BERKELEY LAB

400 A

200 1

—200 A

—-400 +

—600

=
-
-

.-N.
D

g

b -
-% 20
‘viuh'- "% -"\-"""

“l

N4
o

ek
-
-
-
-
-
-
-
-
-

-,

TRIPLET GNN IMPROVES
DOUBLET GNN RESULTS .

= Black: Triplet classifier correctly
labelled, doublet classifier 200 {
mislabelled

= Red: Doublet classifier correctly

labelled, triplet classifier 1
mislabelled
In this graph, triplet classifier
= Fixes 389 edges oo |
= Worsens 10 edges X S —— e " ’

“ gerKELEY LAB AT

PART II: ML PIPELINE AND ARCHITECTURE DESIGN WITH GRAPHS

~ o J;
rereer] 0] AT AT
Il BERKELEY LAB i\w?}*/”kx

GNN SANDBOX

= Problem statement: There are many possible input/output node/edge/graph features, there are many GNN
architectures each working on different types of features, each architecture needs HPO to understand its
strength/weakness

= Would like to create a GNN sandbox - a pipeline that is modular and reproducible that can both manually and
automatically

Generate toy data / Load toy data
Generate a full GNN architecture
Train and evaluate the architecture
Optimise the hyperparameters

Compare between other architectures

ol R

Keep track of the hyperparameters, model architecture, weights, metrics, performance, input/output data, ... everything, so that any of
these can be tweaked or optimised further with no extra coding/work

-~

DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 54

TOO MANY GNNS TO
CODE BY HAND

In 2019, approx. 1 GNN
paper every two days

Presumably will increase in
2020

Google Trend of “Graph
neural network” shows year-
by-year increase

DANIEL MURNANE NERSC & FRIENDS TALK

Interest over time

¥ O
Interest by region Region ¥+ O
China I
South Korea 1

O include low search volume regions

Canada

United States

India

2/5/2020

55

-~

Generate toy data
/ Load toy data

Generate a full
GNN architecture

Train and
evaluate the
architecture

Sandbox

Weights & Biases

Optimise the
hyperparameters

Compare
between other
architectures

Keep track of the

hyperparameters, model

architecture, weights,
metrics, performance,
input/output data, ...
everything

——

e/
rrrrrr il : FATN
Il BERKELEY LAB i %f*/wx

DANIEL MURNANE

NERSC & FRIENDS TALK

2/5/2020

56

1. GENERATE / LOAD DATA

: Ju pyter hub Sandbox Last Checkpoint: 12/02/2019 (unsaved changes) a Logout | Control Panel
v Create or Load Graph Dataset
File Edit View Insert Cell Kemel Widgets Help Not Trusted | pytorch-v1.2.0-gpu [conda envroot] * O
® + = @A B 4+ 4 MHBRun B C M mMarkdown v - A v Generate data hd Load TrackML data
Use the event generator to generate 2- or 3-D dataset. Run the next Or load pre-generated data from a file location

cell to choose dataset parameters.

v GNN Tracking Sandbox

Run the cell of the relevant side to either generate or load data. Hit "Run interact" once parameters are chosen. N.B. Generator may take longer for a very
small angle cut (as many graphs won't have adequate edges and require regeneration) and very large angle cut (as then there is a large set of possible

A generalisable notebook to edges to generate).

Create and load tracking data,
Configure edge construction (if using non-End2End classification), In [5]: M~

Visualise graph data, /ExaTrkX/GNN-5andbox/configs/datasetConfig.yaml”
Configure training pérameters ss_dataset, {"manual":True, "autoc_display”:False}, °’
Construct GNN architecture,
Run automated tests,

Track test output for architecture comparison, num_layers 'S 10.0
Export data. architecture and tests for production runs

4 »

height = 10.0
curve_min () 15.0
» Dependencies [-.] urve e 500
event_size... {_r 40
3 Create or Load Graph Dataset [..] -
event size... () 120
. . max_angle > 0.7
3 Visualise Dataset [-.]
num_samp > 1000.0
. Run Inte
v GNN Architecture e

Current progress: 40.9 %

’\| ' BERKELEY LAB DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 57

1. GENERATE / LOAD DATA

v Create or Load Graph Dataset
Run the next cell to store the generated data to a dataset list. Change the split as required.
hd Generate data v Load TrackML data
Use the event generator to generate 2- or 3-D dataset. Run the next Or load pre-generated data from a file location In[6]: M :ataset = %‘_—‘”E”aFo""‘ESU:_lt Lit ¢) Fixed(d re1id it " N
cell 1o choose dataset paramaters. ataset_sp %t = interactive(split_dataset, dataset-=fixed(dataset), **sliders("split", config_path))
dataset_split
Run the cell of the relevant side to either generate or load data. Hit "Run interact” once parameters are chosen. N.B. Generator may take longer for a very train_percent j) 60.0
small angle cut (as many graphs won't have adequate edges and require regeneration) and very large angle cut (as then there is a large set of possible
edges to generate) . .
In [7]: M train_dataset, test_dataset = dataset split.result
In [5]: M-
JExaTrkX/GNN-5andbox/configs/datasetConfig.yaml” . R
ss_dataset, {"manual”:True, "auto_display”:False}, ’ - Visualise Dataset
4 ' We can visualise some basic information about the training dataset here
num_layers () 10.0
height O 10.0 In [36]: M visualise_training_dataset(train_dataset)
curve_min O 15.0 Number of tracks # Hits vs. # Edges 0104 Distance from collision
500 - g
curve_max () 50.0 0.175 1
-] 1 0.08
event_size () 4.0 0150 00
- 0.125
event_size {_» 12.0 300 0.06 4
N 0.100
max_angle () 0.7
) 0075 1 00 1 004 |
num_samp... 'S 1000.0
- 0.050 100
Run Interact 0024
0.025 4
Current progress: 48.9 % o0 L— L S , . , . .00 .] ' : :
: [2 4 6 B 10 12 20 40 &0 80 100 1 5 10 15 0 bi3
-~
receer ||
/\l BERKELEY LAB DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 58

2. AN ATTEMPT TO GENERATE GNN ARCHITECTURE

v GNN Architecture

We can build a new architecture from scratch, or load a YAML architecture, which is then built into a GNN model. Use the builder to:

Define the overall structure (number of convolutions, number of poolings, type of classification - node, edge or graph)

Choose the convolutions and poolings from a custom set in the /architecture folder, or from the predefined methods in Pytorch Geometric
Structure the order of these convolutions and poolings, and the number of recursions

Choose the MLP structure for each convolution (number of channels, number of layers)

Choose the MLP structure for input and output layers (number of layers)

The input and output MLP channels are defined automatically by the type of classification.

v Generate Architecture v Load Architecture

Use the dropboxes below to choose the number of {node, edge,
graph} {convolutions, poolings}

Or load a pre-written .sketch file

In [4]: M » # Generate architecturess
multiples of .. | 2 V‘
multiples of .. | 1 V‘
multiples of .. | 3 V‘
multiples of... | 0 V‘
multiples of... | 0 V‘
multiples of... | 0 V‘

:Dln BERKELEY LAB DANIEL MURNANE

In [5]:

NERSC & FRIENDS TALK

Then use the following dropboxes to choose the methods used for each of the above layers

M

[display(i) for i in GNMN_layer_generator]

methods of

methods of

methods of .

methods of

methods of

methods of

| GeN v
‘ GAT V‘
K v]
‘ EdgeAttention V‘
‘ GATEdge V‘
o ‘ N-GCN V‘

2/5/2020

59

2. AN ATTEMPT TO GENERATE GNN ARCHITECTURE

GNN Architecture

We can build a new architecture from scratch, or load a YAML architectur:

» Define the overall structure (number of convolutions, number of pooli
» Choose the convolutions and poolings from a custom set in the /arch
» Structure the order of these convolutions and poolings, and the numk
» Choose the MLP structure for each convolution (number of channels,
» Choose the MLP structure for input and output layers (number of laye

The input and output MLP channels are defined automatically by the type
Generate Architecture

Use the dropboxes below to choose the number of {node, edge,
graph} {convolutions, poolings}

In [4]:

M - # Generate architectures

Number of node convolutions
Number of node poolings
Number of edge convolutions
Number of edge poolings
Number of graph convolutions
Number of graph poolings

archConfig.yaml
multiples:
node:
convolutions:
max: 16
min: @
default: @
poolings:
max: 16
min: @
default: @
edge:
convolutions:
max: 1@
min: @
default: @
poolings:
convolutions:
max: 1@
min: @
default: @
graph:
convolutions:
max: 16
min: @
default: @
poolings:
max: 16
min: @
default: @
methods:
node:
convolutions: ["GCN", "GAT", "N-GCN"]
poolings: ["pl", "p2", "p3"]
edge:
convolutions: ["EdgeAttention”, "
poolings: ["EdgePool”, "DiffPool, p3"]
graph:
convelutions: ["Sum”, “Mean™, "SortMean"]
poolings: ["pl", "p2", "p3"]

Then use the following dropboxes to choose the methods used for each of the above layers

In [5]: M [display(i) for i in GNMN_layer_generator]

o * | These are

o v
oot i . .

s Oﬁqo:;\\“%“«, | | deflln(.ed in
a dictionary

N0~ (0O e
\I\e‘x‘(@d&o‘d&o o o \)“0(\ o2 caTeme v

8 (\ ’\ (\ | v
W e N e -1 of methods
{0 e
A& O
S0 (€% o

‘ EdgeAttention hd ‘

/\] BERKELEY LAB

DANIEL MURNANE

NERSC & FRIENDS TALK 2/5/2020 60

2. AN ATTEMPT TO GENERATE GNN ARCHITECTURE

~ SavefLoad Architecture i pipe':i;z;“
. Nwi N , . - B 3 - shortcut
e o e.g. steve_model.yaml Aty
Out[8]: {'pipeline’: ['input’, - ; i :03::::
‘shortcut’, -
{'loopl': ['edgenet’, 'nodenet’, 'shortcut']}, i - shortcut
'edg?net'], ' -~ ' , o o , 8 - edgenst
T 1. States a pipeline 10
"convolution’': 'end_concatenation’, 11 architecture:
pooling’: "agg’. : : -
it e with user-defined
:coml:?lutiun‘: {'attention’': ‘edgenet’}, li— mlp: True
'smégtéuzwe%:‘type': ‘hode’, Iabels i; Ecge:i;;: edge
;T;‘mlgiz}} shorteut_concatenation’, . 17 c;n'-.-eluticn: end_concatenation
Lospa': (Laopa’s 4)) 2. Associates those s
9 mlp: True
3 3 B _ - S - 28 odenet:
L tecture mosehearral avibecture'] labels with the 0 e e
loops = modelConfig['loops’] . . . 22 ccn'-,-:!luticrlw:
dictionary of function
. 25 shortcut:
IR eseric(pipeting, enchitacture, fooes) 3. Handles any exceptlonal ii E;EE_wl:t_i:n shortcut_concatenation
. 28 mlp: False B
behaviour (e.g. loops) s
38 loops:
H 31 loopl: 4
The GNN is generated from the dropdown — -
33
““ ” H
boxes, or loaded from a “sketch” file.
~
ﬁ:h.l " BERKELEY LAB DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020

2. AN ATTEMPT TO GENERATE GNN ARCHITECTURE

\
Then use the following dropboxas to choo: tnmm\\i eac

[5]1: M| [display(i) for a"]

o : Thgse ar-e
defined in
a dictionary

4 .
)—‘\&i)&oiasses

The GNN is generated from the dropdown
boxes, or loaded from a “sketch” file.

“|| BERKELEY LAB P FApTrkx DANIEL MURNANE

2. Assoc-qtes JSe v [
la% %h the V\ =
ary of functit \ | i s
’\ ndles any g 0 al e

1. States a pipelinedC \

with user-d ir . |
labels &/)

behawour e I())ps

NERSC & FRIENDS TALK 2/5/2020 62

3. TRAIN & EVALUATE THE MODEL

PyTorch Network

1 pipeline: Sk t h y I ' II

2 - input e C - a

3 - shortcut

4 - loopl: 17 «class EdgeNetwork(nn.Module):

5 - edgenet 18 wnn

6 - nodenet

; - shorteut 19 A module which computes weights for edges of the graph.

8 - edgenet 28 For each edge, it selects the associated nodes' features

9 > 21 and applies some fully-connected network layers with a final

=
@
]
[]

sigmoid activation.

11 architecture: 23 o
12 input: L.
13 type: node 24 def _ init_ (self, input_dim, hidden_dim=8, hidden_activation=nn.Tanh,
14 nlp: T 25 layer_norm=True}:
- noe e 1 def end_concatenation{**kwargs): _ yEro) ..
15 edgenet: - . . " 26 super(EdgeMNetwork, self).__init_ ()
= fypei edge . start, end = kuargs] ‘edge_index"] 27 self.network = make_mlp(input_dim*2
m_w m_ 4 O =
17 convolution: end_concatenation 3 x1, x2 = kwargs["x"][start], kwargs["x"][end] + _ -me P - U R . .
18 pooling: agg a concat_edge = torch.cat([x1, x2], dim=1) 28 [hidden_dim, hidden_dim, hidden_dim, 1],
19 mlp: True 5 return concat_edge 29 hidden_activation=hidden_activation,
20 nodenet: 6 3@ output_activation=None,
2 type: node 7 def shortcut{**kwargs): 31 layer_norm=laysr_norm)
e convolution: 8 inputs = kwargs["inputs"] 32
23 attention: edgenet _ . .
24 wlp: True g] x = kwargs["x"] .) 33 def forward(self, x, edge_index):
25 shortcut: i x = torch.cat([x, inputs.x], dim=-1) . 34 # select the features of the associoted nodes
- 11 new_kwarg = {"x": x} » .
26 type: node - 35 start, end = edge_index
2? cin'-.-oluiicn: shortcut_concatenation 13 return kwargs.update(neu_kwarg) g xl, x2 = x[start], x[end]
iz mlp: False 37 edge_inputs = torch.cat([x[start], x[end]], dim=1)
Eé loops: 38 return self.network{edge_inputs).squeeze(-1)
Dict f method :
= ICliIONnary O etnoas
33

DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 63

3. TRAIN & EVALUATE THE MODEL PyTorch Training +

Evaluation

v Edge Classification Testing
PyTorch Network e wf
loss v =[]
acc_v = []
ep =@
for epoch in range(5@@):
17 «class EdgeNetwork(nn.Module): €0 8o il
_ — correct = @
18 total = @
19 A module which computes weights for edges of the graph. for batch in train_loader:
h ed it =zele he zss : d des' fes # print(batch.x)
28 For each edge, it selects the associated nodes eatures optimizer.zero grad()
21 and applies some fully-connected network layers with a final data = batch.to(device)
22 i id tivati pred - model({data)
Sigmold activation. loss = F.binary_cross_entropy_with_logits(pred.float(), data.y.float())
23 e loss.backward()
- . . . P . . s optimizer.step()
24 def _ init_ (self, input_dim, hidden_dim=8, hidden_activation=nn.Tanh, correct 4+ ((pred > B.5) == (data.y > 8.5)).sun().iten()
25 la}rer_norm=True}: # print(correct, pred, data.y)
»
26 super(EdgeNetwork, self). _init_ () » Eotaliesl calnaed)
— — # print(out, data.y,)}
27 self.network = make_mlp(input_dim*2, . . acc = correct/total
28 [hidden_dim, hidden_dim, hidden_dim, 1], NOthlng speC|aI here... prin<(Epoch: © . ep, ", doss: ., loss.dten(), ", sccuracy: . acc)
055_V.appen 055
29 hidden_activation=hidden_activation, acc_;.angna(acc)
3@ output_activation=None, plt.plot(np.arange(len(loss_v)), loss_w)
- plt.plot(np.arange(len(acc_v)), acc_v)
31 layer_norm=layer_norm) plt.ylim(e.1,1)
32
33 def forward(self, x, edge_index):
24 # Select the features of the associated nodes
_ - In [52]: M model.eval()
35 start, end = Edge—lndex for batch in test_loader:
36 x1, x2 = x[start], x[end] print(batch))
37 edge_inputs = torch.cat([x[start], x[end]], dim=1) ;i:: - ﬁz;:?&;gi:?mce)
38 return self.network{edge_inputs).squeeze(-1) correct = ((pred > @.5) == (data.y > @.5)).sum().iten()

acc = correct / len(pred)
print('Accuracy: {:.4f}'.format(acc))

’\| " BERKELEY LAB DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020

Sandbox

Weights & Biases

Va x

Generate toy data Generate a full Train and Optimise the Compare ﬁeegrtfgﬁnogttehrg odel
/ Load toy data GNN architecture evaluate the hyperparameters between other atehitocture, weights,

architecture architectures metrics, performance,
input/output data, ...
everything

N

-~

< K»;—\ TrkX DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 65

4. OPTIMISE HYPERPARAMETERS WITH WEIGHTS & BIASES (W&B)

v Edge Classification Testing

In [51]: M model.train()
loss v = []
acc_v = []

ep =@
for epoch in range(5ee):

ep += 1

correct = @

total - @

for batch in train_loader:
print(batch.x)

optimizer.zero_grad()
data = batch.to(device)
pred = model(data)

Inss = F hinarv rracs entronu with lagitsinred flnatiy data v Flnatiy

Preface with...

1. B Initialise W&B

2. andb.matchcmodel, Togorally T e oddentce) Watch model (weights & gradients)

3. wandb.log({"Validation Accuracy”: val_acc, "Best Accuracy”: best acc, "Validation Loss": val loss, "Learning Rate": Log metrics of interest
4. wandb.agent(sweep_id, function=train) Define sweep agent

5. M 2:2:5.;u:?r)ldb.contr‘oller‘(sweep_id) Run sweep

DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020

/\] BERKELEY LAB

66

WEIGHTS & BIASES PROPAGANDA SLIDE

= Wandb.ai
ML WORKFLOW
= “Those who don't track training are
. dataset experiment data model continuous production

doomed tO I’epeat It. 7 versioning tracking exploration optimization integration monitoring
= Hard workers - have made 5 or 6 W TO0LS

suggestions to them, and most were Dashboard Sweeps

quickly implemented

:ﬁlﬂ BERKELEY LAB DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 67

4. OPTIMISE HYPERPARAMETERS WITH WEIGHTS & BIASES (W&B)

= Sweeps compare HPO results

0.040
0.035

N
0.0304

An HPO sweep for
doublet classification

0.025

0.020

0.015

0.010

0.005

0.000 -

= W&B is an amazing metric/weights/gradients tracker and visualiser, and a standard HPO platform (implements
Ray’s Tune library)

- pem g/
:Dlﬂ BERKELEY LAB _ \ﬂ)_g\/TrkX DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 68

5. COMPARE ARCHITECTURES

= W&B can be used to compare between sweeps

Best Accuracy ol Learning Rate

— spring-sweep-1 -— honest-sweep-1 - glamorous-sweep-1 — vibrant-sweep-1 — glowing-sweep-1 — selar-sweep-1 — spring-sweep-1 — honest-sweep-1 — glamorous-sweep-1 — vibrant-sweep-1 — glowing-sweep-1 — solar-sweep-1

i i]
i !
e i 0.004
oss \
1 [i
Py - Y
f : ~.. e
{ . S —
Iy Step . T
i M i i
o - My
d 20 40 &0 50 100 120
0 20 40 &0 80

= W&B can do discrete Bayesian optimisation over architectures (but this doesn’t really work well in practice)

e

:hllﬂ BERKELEY LAB &*E?i\»;;’(ﬂkx DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020

69

Sandbox

Weights & Biases

Generate toy data Generate a full Train and Optimise the Compare between ﬁeegrtféﬁno;tteﬁg el
/ Load toy data GNN architecture evaluate the hyperparameters other architectures aﬁﬁ’hitgcture, Weishis

architecture metrics, performance,
input/output data, ...
everything
®

N

-~

o /
P ?K”:_\ TrkX DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 70

6. TRACK EVERYTHING

= W&B tracks every element of a model:

= Metrics

“ || BERKELEY LAB DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 71

6. TRACK EVERYTHING

= W&B tracks every element of a model:
= Metrics
= Gradients + weights - GRaoIENTS 29
gradients/edge_network.network.0.bias gradients/edge_network.network.0.weight
—
gradients/edge_network.network.2.weight gradientsfedge_network.network.4.bias
— —
« < 1 2 3 4 5 > »
~

DANIEL MURNANE

NERSC & FRIENDS TALK

2/5/2020

72

6. TRACK EVERYTHING

= W&B tracks every element of a model:
= Metrics
= Gradients + weights

= Model architecture

graph_0
Name Type # Parameters Output Shape
L[] input_network.0 Linear(in_features=3, out_features=10, bias=True) 30,10 12420,10
L] input_network.1 ReLU()} 12420,10
L] edge_network EdgeNetwork((network): Sequential((0): Linear(in_features=26, out_features=10, bias=True) {1}: ReLU() (2): Linear(in_fea... 260, 10, 100, 10, 100, 10, 10, 1 42789
. node_network NHopAttNetwork((network): Sequential((0): Linear(in_features=91, out_features=10, bias=True) (1}: LayerNorm((10,), ep... 910, 10, 10, 10, 100, 10, 10, 10, 100, 10, 10, 10, 100, 10, 10, 10 12420,10

/\] BERKELEY LAB

rkX DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 73

6. TRACK EVERYTHING

= W&B tracks every element of a model:

= Metrics
= Gradients + weights
= Model architecture

= Terminal logs

/r\lﬂ BERKELEY LAB

DANIEL MURNANE

Loading data...

Using cuda
Training...

NERSC & FRIENDS TALK

2/5/2020

74

6. TRACK EVERYTHING

= W&B tracks every element of a model:

ﬁr\lﬂ BERKELEY LAB

Metrics
Gradients + weights

Model architecture

Terminal logs

Performance

Geu utlization (%)

e/
e DANIEL MURNANE
e — % \

P Time Spens Accessing Memory (%)

NERSC & FRIENDS TALK

G Temp °C)

mmmmmmmmmmmmmmmmmm

2/5/2020

75

6. TRACK EVERYTHING

= W&B tracks every element of a model:
= Metrics
= Gradients + weights
= Model architecture
= Terminal logs

= Performance

= Not reproducible, per se

= Need Data (and model) Version Control (DVC)

P K*}(wx DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020

:r\lﬂ BERKELEY LAB

DVC PROPAGANDA SLIDE

= DVC.org

= A full model & data
versioning solution

= Excellent tutorials
= Also work very hard

= Pretty reliable
Google Drive API

-~

Remote

Local

Code Data
Github, Gitlab, any Git Server S3, Azure, Google Cloud, SSH

©

<>

code

DANIEL MURNANE

(I) —_— D) = :‘K?l

model.pkl.dve model.pkl
1KB SO0MB

NERSC & FRIENDS TALK

Data Scientist

Training

l:___"i'

Code

Data Scientist

Data & Models

©® S

Git Server

$3, GCP, SSH, etc

2/5/2020

77

Sandbox

Weights & Biases

Generate toy data Generate a full Train and Optimise the Compare between ﬁeegrtféﬁno;tteﬁg el
/ Load toy data GNN architecture evaluate the hyperparameters other architectures aﬁﬁ’hitgcture, Weishis

architecture metrics, performange,
input/output datadw
everyt
®

N

-~

o /
o K»;—\ TrkX DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 78

6. TRACK EVERYTHING

Pipeline is thus:

dvc repro

\

*Hand
. engineer,
Define (or)
architecture .
* Naive layer
builder

- 7 .
: _‘_erkx

*DVC wraps
dvc run: LS
S | *W&B HPO git commit
sweep wraps dvc push
PyTorch
train/eval

DANIEL MURNANE

Sends all
model/
pipeline info
to Google
Drive

NERSC & FRIENDS TALK

Checkout
with DVC,

inspect in
W&B

Model
versions
controlled
and
visualisable

2. GENERATE GNN ARCHITECTURE

REDUX: GRAPHS ALL THE WAY DOWN

= Linear pipeline is not a good representation for a GNN

= C.f. Relational Inductive Biases, Deep Learning, and Graph Networks [Battaglia et al., 2018, Google DeepMind +
Brain + U of Edinburgh]

= (Google paper uses “blocks”, where each block contains a flow of one node, edge and graph function

!
Go— GN; |~ G, u — " —-u
L \
V= —~V’
N
GU —> GNcnrs' —> Gy
x M E —_— i E.F

Edge block MNode block Global block

“ || BERKELEY LAB DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 80

2. GENERATE GNN ARCHITECTURE

REDUX: GRAPHS ALL THE WAY DOWN
Graph representation

= ML Network as computations graph, e.g. GNN Attention Model

nnnnnnnnnnn

edge scores 1
9 feats 1
\ \‘ / \ -

[Ho, X] [wo] [Hi, X] [wi] [Hi X] [wi]
- - /
edge mip \

i aar renresentation
ear representatio SNe_

edge concat

® Neural Architecture Search Over a Graph Search Space [Jastrzebski et al., 2019, Google Al] Dat q
dala node
® Suggests graph representation can be optimised better than linear representation

Function node

:Dlﬂ BERKELEY LAB “;& \11 TrkX DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 81

2. GENERATE GNN ARCHITECTURE

REDUX: GRAPHS ALL THE WAY DOWN
Graph representation

= ML Network as computations graph, e.g. GNN Attention Model

nnnnnnnnnnn

NodeNet

N e T]\ e g
- "™ EdgeNet /
Linear representation \

edge concat

® Neural Architecture Search Over a Graph Search Space [Jastrzebski et al., 2019, Google+

Data node
® Suggests graph representation can be optimised better than linear representation

Function node

= v i
:Dlﬂ BERKELEY LAB e B X TrkX DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 82

2. GENERATE GNN ARCHITECTURE

REDUX: GRAPHS ALL THE WAY DOWN

A
= New plan: generate GNN architecture as a computation graph m‘\‘\ /

= Obvious problem: Cannot arbitrarily connect data-function-data a

‘-‘-—““—'""“"--..
= To choose the structure of the graph, walk through a function graph m,/ \edgmm

= As we walk through function graph, we are constructing the /
computation graph L a \

Example function graph

DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 83

:r\lﬂ BERKELEY LAB

ARCHI OP TR X: ARCHIOPTRX

=

Define sources and targets (e.g. source: node data, target: edge data)
Start random walk in function graph at source node

From data nodes, randomly choose a child function

> W N

From function nodes, proceed to child data

:Dlﬂ BERKELEY LAB i_*tf}t;»\/ﬂkx DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020

ARCHI OP TR X: ARCHIOPTRX

neighbour concat

edge sum

1. Define sources and targets
node mip

] function graph
(e.g. source: node features, target: edge features) \

2. Start random walk in function graph at source node 2!
/ R\
3. From data nodes, randomly choose a child function e PR
4. From function nodes, proceed to child data
X% ¢

hance of
edge attention acceptl ng ta rget
> > E—— — > e —

edge mip

-~

DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 85

-~

ARCHI OP

1. First pass track (could be good enough)
—_— mm— mm— m— —_— —_—

2. Then, can add subsequent tracks with Y% percent likelihood,
randomly choosing a new source/target. E.g. recurrence:

4—
/ loop \
— — — — > —

DANIEL MURNANE

TR

node concat

NERSC & FRIENDS TALK

X: ARCHI

neighbour concat

edge

OPTRX

sum

\ / 4 function graph

‘/XE“‘“‘

edge attention

*b

edge concat

feats /

edge mip

2/5/2020 86

HANDLING MULTI-INPUT FUNCTIONS

= What happens when we reach a function that has # parents > 1

= We reverse random walk - follows the exact prescription of regular

walk but with source «— target o \ / 4 function graph

- dgecnncat
\ dg | ts

_ > — — — —

edge mip

computation graph

“ || BERKELEY LAB e i Triex DANIEL MURNANE NERSC & FRIENDS TALK 2/5/2020 87

ARCHIOPTRX RANDOM GENERATION WORKS

With function graph pictured, we get with source=node, target=edge:

‘adge concat

eeeeeee
node feats q\ /we feats 3
/ node mip 2
e attention

eeeeeee

First pass track

= i
:Dlﬂ BERKELEY LAB \f"ﬁ\‘t-f\/”kx DANIEL MURNANE NERSC & FRIENDS TALK

2/5/2020

88

-~

ARCHIOPTRX RANDOM GENERATION WORKS

With function graph pictured, we get with source=node, target=edge:

edge feats 26\bé
dge sum 25

\ de concat 9
adge sum 30
node mip &
\‘mde feats 31
iy 1‘< edge feats 22
node feats 14——————rode concat 15—, 4o IO Qur concat 11
W e MRSl 2 prode feats 1
———node feats \
node feats node feats 33\‘
edge concal
edge concat
node concal /e e concat

node feats 24

edgeconcat ET% ———————— nodefeats
4
dge feats 28 j——————— A

no
edge concat 23

node feats 10

'

Two track iterations

;\....H_ A

e

DANIEL MURNANE NERSC & FRIENDS TALK

2/5/2020

89

ARCHIOPTRX: PLUGGING INTO PIPELINE

dvc repro

\

Function
Architecture gl’a ph
generation random
walk

/—\] BERKELEY LAB

*DVC
wraps
W&B

*W&B HPO
wraps
PyTorch
train/eval

e Given the
W=eeie full archit-
ameters eCtU re

DANIEL MURNANE

Sends all
model/
git commit pipeline
dve push info to
Google
Drive

NERSC & FRIENDS TALK

Model
Checkout versions
i) controlled
inspect in
W&B . anq
visualisabl
e

-~

NEXT STEP

= RNN Reinforcement Learning controller for function graph walk

DANIEL MURNANE

NERSC & FRIENDS TALK

2/5/2020

91

-~

BACKUP

DANIEL MURNANE

NERSC & FRIENDS TALK

2/5/2020

92

relevant elements
I 1

false negatives true negatives

©o o © © o

ASIDE: QUICK
NOTATION

true positives false positives

» Recall = Efficiency

PY PreC|S|On — Purlty selected elements

= - v
“ | BERKELEY LAB = A e

How many selected
items are relevant?

Precision = ———

How many relevant
items are selected?

Recall = —

C

What fraction of the
elements are true?

Accuracy = —

D

