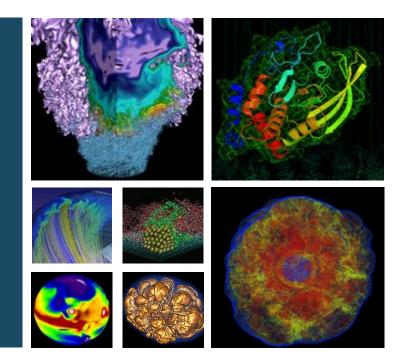
Using unsupervised learning to understand magnet acoustic events



L. Stephey, M. Mustafa, X. Jia, M. Marchevsky Nov 13, 2019 HEP-ML Seminar

Introduction and vocabulary

- Superconducting magnets have to be "trained" to get them to reach high magnetic fields (through increasing current)
- Training ramps end in a "quench" when the magnet stops superconducting
- Training is costly→ can it be reduced or avoided altogether?

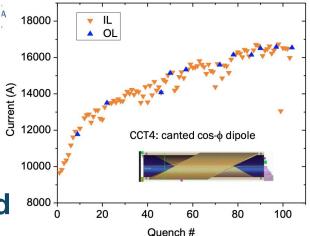
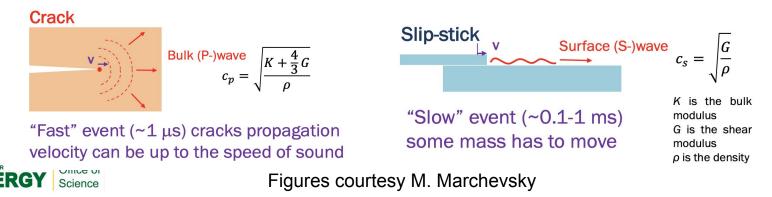


Figure courtesy M. Marchevsky

Hypothesis: magnet training is dominated by two kinds of physical events:

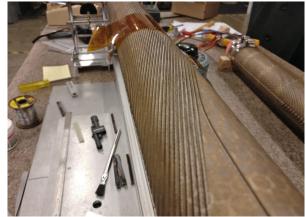
- Cracking (transient event)
- Stick-slip (slower, more continuous event)
- 1) Can we identify these events? Do we observe clustering in our data?

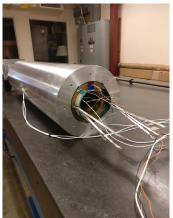
2) If we can, can they be used to predict the quench event?



Experimental setup for acoustic data

- All data from canted-cosine-theta Nb3Sn dipole magnet CCT4 at LBL
- Use acoustic sensors to measure events
- Data courtesy M. Marchevsky and collaborators

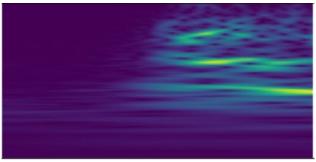




Experimental setup and data

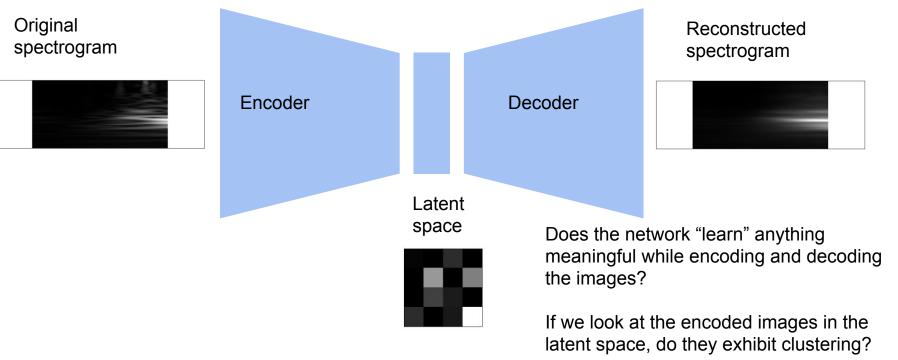
- Using audio data from two sensors (top and bottom of magnet)
- "Events" are automatically identified, windowed, and spectrograms are created
- We apply image processing techniques to these spectrograms (which may or may not be a good idea, since the x and y axis have different meanings)

Frequency



Time

Idea: use autoencoder to find clusters



Autoencoder architecture

autoencoder = Sequential()

- 3 layer, dense network
- Latent space size 16
- Batch size 8
- Used binary crossentropy
 loss function
- Trained 20 epochs
- Performed HPO using Talos package to find optimal hyperperameters

Decoder Layers

Encoder Layers

```
autoencoder.add(Dense(2 * encoding_dim, activation='relu'))
autoencoder.add(Dense(4 * encoding_dim, activation='relu'))
autoencoder.add(Dense(input_dim, activation='sigmoid'))
```

autoencoder.add(Dense(2 * encoding_dim, activation='relu'))
autoencoder.add(Dense(encoding_dim, activation='relu'))

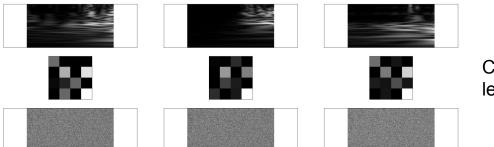
Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	64)	8388672
dense_2 (Dense)	(None,	32)	2080
dense_3 (Dense)	(None,	16)	528
dense_4 (Dense)	(None,	32)	544
dense_5 (Dense)	(None,	64)	2112
dense_6 (Dense)	(None,	131072)	8519680

autoencoder.add(Dense(4 * encoding dim, input shape=(input dim,), activation='relu'))

Total params: 16,913,616 Trainable params: 16,913,616 Non-trainable params: 0

What features are present in the data?

Put the spectrograms into a randomly initialized, untrained network

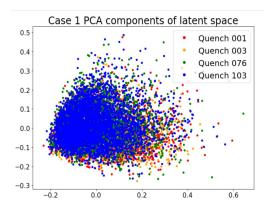


Clearly it hasn't learned anything!

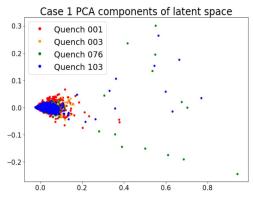
Normalize each spectrogram

Normalize to max value of quench

No normalization

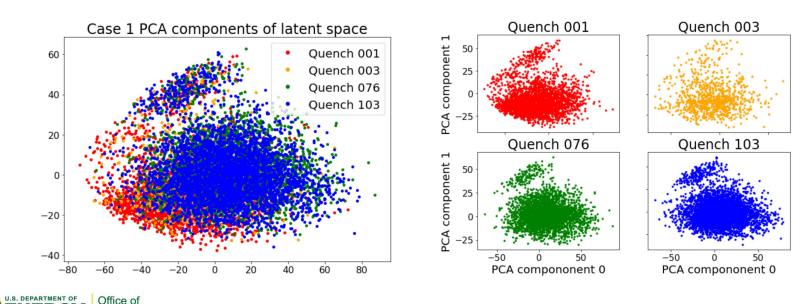


Case 1 PCA components of latent space 0.20 **Ouench 001** Ouench 003 0.15 Ouench 076 Ouench 103 0.10 0.05 0.00 -0.05 -0.100.4 0.0 0.1 0.2 0.3

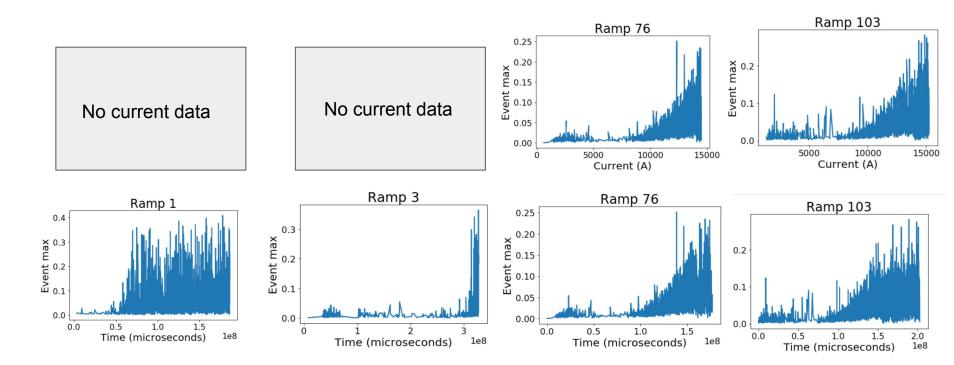


Science

It wasn't until we normalized each spectrogram to its max value that we saw clustering our latent space

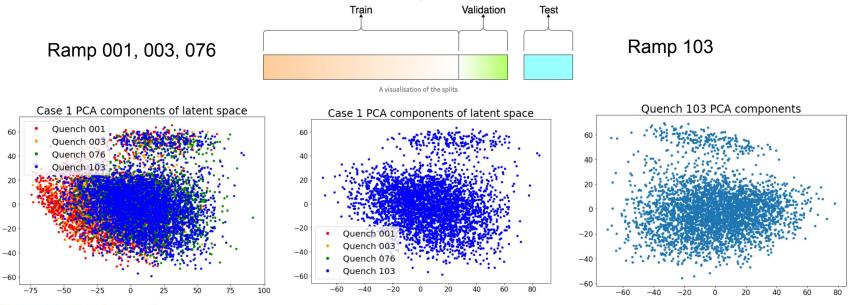


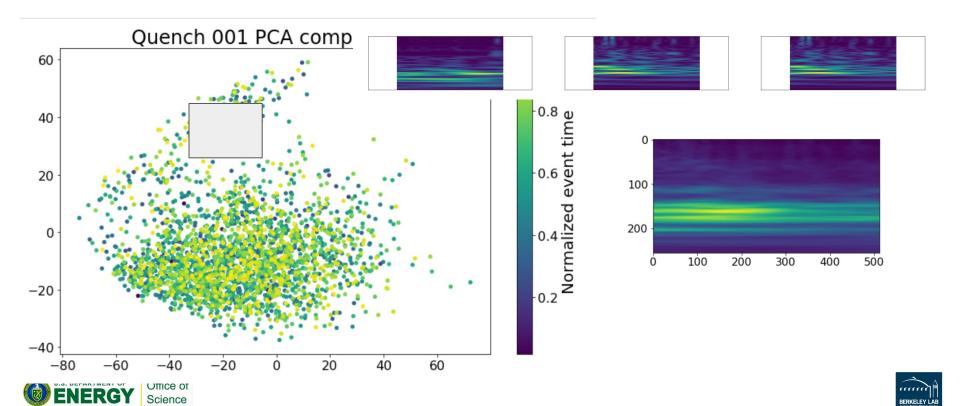
Event max as function of current, time



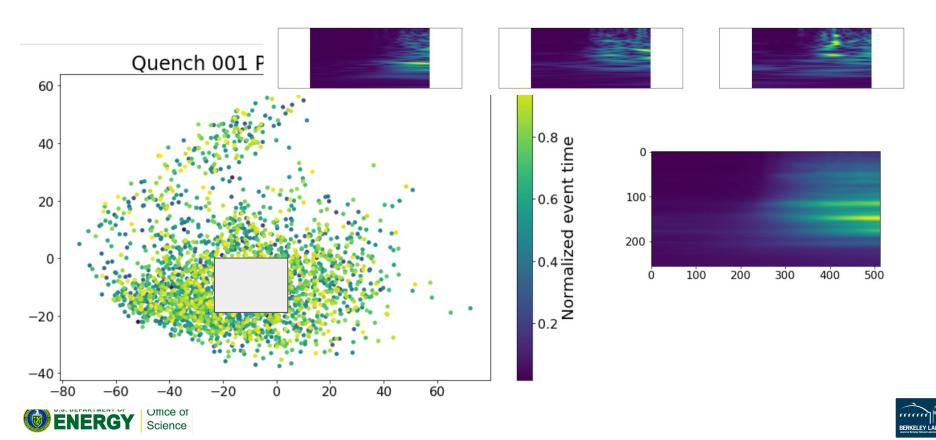
Office of Science

Training the network while leaving out a ramp (103) results in robust clustering in the latent space

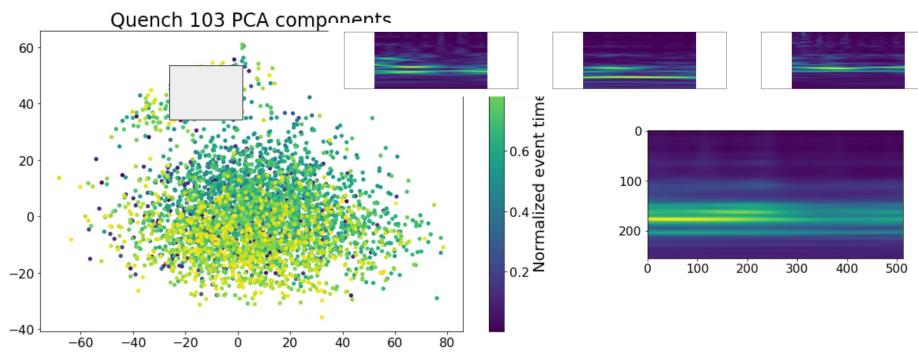




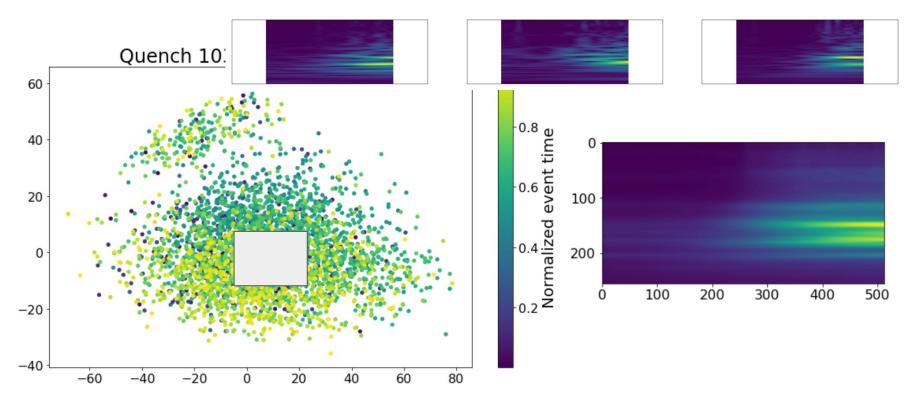
Bottom cluster Ramp 1



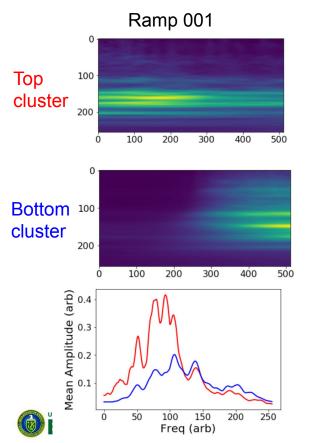
Top cluster Ramp 103

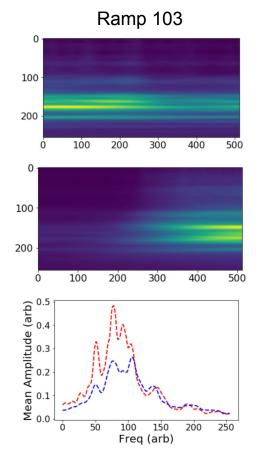


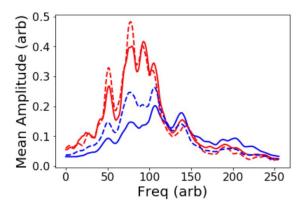
Bottom cluster Ramp 103



Compare frequency content of mean spectrograms

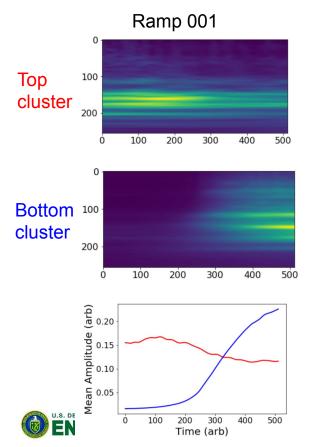


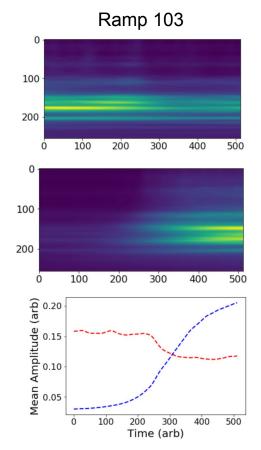


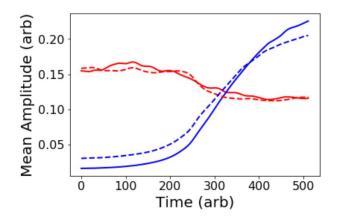


Differences in frequency between Ramp 001 and Ramp 103 occur in the low frequencies

Compare temporal behavior of mean spectrograms







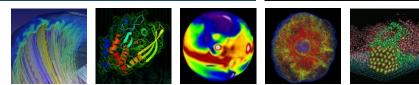
Differences in temporal behavior between Ramp 001 and Ramp 103 are primarily in the bottom cluster

- Used a dense autoencoder to examine latent space of four training ramps for CCT4 magnet
- Robust clustering observed in the latent space only when each spectrogram is normalized
- Top, smaller cluster corresponds to slow events
- Bottom, larger cluster corresponds to fast events
- Seems to support original hypothesis of two classes of acoustic events (cracking and slip-stick)

Open questions

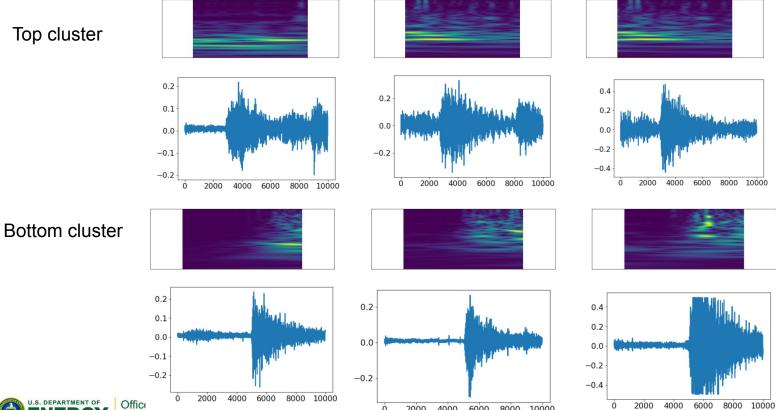
- Does this method generalize to other data? (new magnet CCT5, for example)
- Is this a good approach? Spectrograms are not like images, their x and y axes are fundamentally different quantities
- Is the network sorting by `long` and `short`? By frequency content? → future work to look more deeply into this
- Can we use `supervised` methods to label the precursor events and see if the network can identify similar precursors in a previously unseen dataset?
- Other thoughts, comments, questions, suggestions?

Thank you!



Ramp 001

Top cluster



2000

Ó

4000

6000

8000 10000

Ramp 103

Top cluster

Bottom cluster

.S. DEPARTMENT OF

ER

Ξ

