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Using unsupervised 
learning to understand 
magnet acoustic 
events



Introduction and vocabulary

● Superconducting magnets have to be 
“trained” to get them to reach high 
magnetic fields (through increasing 
current)

● Training ramps end in a “quench” 
when the magnet stops 
superconducting

● Training is costly→ can it be reduced 
or avoided altogether? 

Figure courtesy M. 
Marchevsky



Why use deep learning?

Hypothesis: magnet training is dominated by two kinds of physical events:

● Cracking (transient event)
● Stick-slip (slower, more continuous event)

1) Can we identify these events? Do we observe clustering in our data?

2) If we can, can they be used to predict the quench event?

Figures courtesy M. Marchevsky



Experimental setup for acoustic data

● All data from canted-cosine-theta Nb3Sn dipole 
magnet CCT4 at LBL

● Use acoustic sensors to measure events
● Data courtesy M. Marchevsky and collaborators



Experimental setup and data

● Using audio data from two sensors (top and bottom of 
magnet)

● “Events” are automatically identified, windowed, and 
spectrograms are created

● We apply image processing techniques to these 
spectrograms (which may or may not be a good idea, 
since the x and y axis have different meanings)

Frequency

Time



Idea: use autoencoder to find clusters

Encoder Decoder

Latent 
space Does the network “learn” anything 

meaningful while encoding and decoding 
the images?

If we look at the encoded images in the 
latent space, do they exhibit clustering?

Original 
spectrogram

Reconstructed 
spectrogram



Autoencoder architecture

● 3 layer, dense network
● Latent space size 16
● Batch size 8
● Used binary crossentropy 

loss function
● Trained 20 epochs
● Performed HPO using 

Talos package to find 
optimal hyperperameters



What features are present in the data?

Normalize each spectrogram Normalize to max value of quench No normalization

Put the 
spectrograms into 
a randomly 
initialized, 
untrained network

Clearly it hasn’t 
learned anything!



Key was in normalization

It wasn’t until we normalized each spectrogram to its 
max value that we saw clustering our latent space



Event max as function of current, time

No current data No current data



Training the network while leaving out a ramp (103) 
results in robust clustering in the latent space

Clustering behavior is robust

Ramp 001, 003, 076 Ramp 103



Top cluster Ramp 1



Bottom cluster Ramp 1



Top cluster Ramp 103



Bottom cluster Ramp 103



Compare frequency content of mean 
spectrograms

Ramp 001 Ramp 103

Top 
cluster

Bottom 
cluster

Differences in frequency 
between Ramp 001 and 
Ramp 103 occur in the low 
frequencies 



Compare temporal behavior of mean 
spectrograms

Ramp 001 Ramp 103

Top 
cluster

Bottom 
cluster

Differences in temporal 
behavior between Ramp 001 
and Ramp 103 are primarily 
in the bottom cluster



Summary

● Used a dense autoencoder to examine latent space 
of four training ramps for CCT4 magnet

● Robust clustering observed in the latent space only 
when each spectrogram is normalized

● Top, smaller cluster corresponds to slow events
● Bottom, larger cluster corresponds to fast events
● Seems to support original hypothesis of two classes 

of acoustic events (cracking and slip-stick)



Open questions
● Does this method generalize to other data? (new magnet 

CCT5, for example)
● Is this a good approach? Spectrograms are not like images, 

their x and y axes are fundamentally different quantities
● Is the network sorting by `long` and `short`? By frequency 

content? → future work to look more deeply into this
● Can we use `supervised` methods to label the precursor 

events and see if the network can identify similar precursors in 
a previously unseen dataset?

● Other thoughts, comments, questions, suggestions?



Thank you!



Ramp 001

Top cluster

Bottom cluster



Ramp 103

Top cluster

Bottom cluster


