

Indirect detection of dark matter using gamma rays (specifically using Fermi telescope)

Sai Neha Santpur PHYS 290E, Fall 2019 30 October 2019

Recap

- We know dark matter exists
 - Galaxy rotation curves, gravitational lensing, CMB, even universe simulations
- What is it? What is its mass, spin etc?
 - No idea!
 - Could be anything
- Where is it?
 - Apparently everywhere!
- Where do we look for it?
 Everywhere
- How do we look for it?
 - Every way possible
 - From cosmos to colliders.

Today we will explore gamma rays!

Introduction

- How do gamma rays help in dark matter detection?
 - Weakly Interacting Massive Particles (WIMPs)
 - In dense regions of the universe, WIMPs might annihilate or decay into Standard Model particles like charged leptons, gamma rays and neutrinos
 - Gamma rays and neutrinos are excellent final states to look for as they can reach us almost unperturbed
 - Axion-like dark matter (ALPs)
 - If it couples to photons, then you might see their presence in gamma ray spectrum
 - Photons travelling from far away sources might convert into axions in the presence of strong electromagnetic fields

Introduction

If photons do not convert into axion-like particles

If photons convert into axion-like particles

October 30, 2019

Different photon telescopes

Fermi Gamma-Ray Space Telescope

- In a low earth orbit with semi-major axis of 6000 km and period of 95 min
- Fermi includes two instruments
 - Large-Area telescope (LAT): A pair conversion instrument to detect gamma rays in energy range 20 MeV - 300 GeV. Covers 20% of the sky
 - Gamma-ray Burst Monitor Ο (GBM): Can detect gamma ray bursts in energy range 8 KeV -30 MeV at almost all angles

https://science.nasa.gov/toolkits/spacecraft-icons

Source

Fun facts about Fermi

- Launched in 2008 with a 5 year mission but still taking data
- In April 2012, it narrowly missed collision with another satellite
- In March 2018, the solar arrays stopped rotating and it was placed at fixed angle w.r.t its orbit to maximize solar power and eventually fixed after power cycling
- Successes:
 - Discovered a pulsar that only emits gamma-rays, first of its kind
 - Greatest Gamma Ray Burst ever recorded
 - In 2010, determined that supernova remnants act as enormous particle accelerators (fulfilling one of its missions)
 - Determined that active galactic nuclei only contribute to 30% of gamma rays detected on earth, origin of remaining unknown
 - Highest energy solar flare ever recorded

Large Area Telescope

October 30, 2019

S. N. Santpur

Tracker

- Tracker:
 - 16 layers of thin tungsten (for pair-production) interweaved with two single sided silicon strip detectors at 90° angle to facilitate e⁻/e⁺ reconstruction
 - The two silicon layers placed at 90° angle allow for position reconstruction
 - Use the two track signature to suppress charged cosmic ray background
 - Custom ASICs are used to in read-out electronics

 Materials chosen based on high reliability for previous space experiments

Calorimeter

- Each calorimeter module has 96 CsI(TI) crystals arranged in 8 layers alternating in orientation
- Photo diodes are used to detect energy deposited in each crystal on both sides
 - Use asymmetry on both sides to get position information of the shower along the crystal
- Although the calorimeter is only 8.6 radiation lengths, the longitudinal segmentation enables energy measurement upto a TeV

Anti-Coincidence Detector (ACD)

- Need to reject single charged particles entering LAT field of view
- Efficiency of ACD to detect single charged particles is 99.97%
- Use well segmented plastic scintillator tiles coupled with PMTs
 - It is most reliable, efficient, well-understood and inexpensive technology with previous successful use in space experiments
- For more details, please read the detailed instrumentation paper <u>here</u>
 - It is a great example for understanding design choices for a particle detector

LAT performance

Parameter	Value or Range	
Energy range	20 MeV - 300 GeV	
Effective area at normal incidence ^a	$9,500 \text{ cm}^2$	
Energy resolution (equivalent Gaussian 1σ):	[]	
100 MeV – 1 GeV (on axis)	9%-15%	
1 GeV – 10 GeV (on axis)	8%-9%	
10 GeV - 300 GeV (on-axis)	8.5%-18%	
$>10 \text{ GeV}$ ($>60^{\circ}$ incidence)	$\leq 6\%$	
Single photon angular resolution (space angle)		
on-axis, 68% containment radius:		
>10 GeV	$\leq 0.15^{\circ}$	
1 GeV	0.6°	
100 MeV	3.5°	
on-axis, 95% containment radius	$< 3 imes heta_{68\%}$	
off-axis containment radius at 55°	$< 1.7 \times$ on-axis value	
Field of View (FoV)	2.4 sr	
Timing accuracy	$< 10 \ \mu sec$	
Event readout time (dead time)	$26.5 \mu \text{sec}$	
GRB location accuracy on-board ^b	< 10'	
GRB notification time to spacecraft ^c	<5 sec	
Point source location determination ^d	< 0.5'	
Point source sensitivity (>100 MeV) ^e	$3 \times 10^{-9} \text{ ph cm}^{-2} \text{ s}^{-1}$	

October 30, 2019

Known backgrounds

• Use previous experiments to figure out expected backgrounds

TABLE 5. DATA SOURCES FOR BACKGROUND MODEL

	Energy range		
	> local geomagnetic cutoff	150 MeV to geomagnetic cutoff	10 MeV – 150 MeV
Galactic Cosmic Rays			
protons + antiprotons	AMS		
electrons	AMS		
positrons	AMS		
He	AMS		
Z > 2 nuclei	HEAO-3		
Splash Albedo			
protons		AMS	Nina
electrons		AMS	Mariya
positrons		AMS	Mariya
Re-entrant Albedo			
protons		Nina	
electrons	Mariya		
positrons	Mariya		
Earth albedo γ -rays	10 MeV – 100 GeV, EGRET		
Neutrons	10 MeV – 1 TeV, various sources		

October 30, 2019

Dark matter signatures

- If WIMP DM exists, then they annihilate in high density DM regions creating energetic gamma rays which can be detected by Fermi LAT
- WIMP decays can result in two signatures at LAT
 - Continuous gamma ray excess: Can result due to pion decay from WIMP annihilations into SM particles
 - Generally has higher cross-section but difficult to separate from Galactic diffuse foreground
 - Mono-energetic gamma ray peaks: Arise when DM annihilates and creates two photons
 - Might have much lower cross-sections but has a clear distinguishable signature

Dark matter constraints from White dwarfs

Source

- Dwarf spheroidal galaxy (dSphs): Small, low-luminosity galaxy with older stellar population
- Kinematic data indicate that the dSphs accompanying Milky way have large DM density
- Expected signal flux in Fermi LAT due to DM density ρ_{DM} :

Why are white dwarfs good to probe DM?

- Milky way dSphs can result in J-factors of 10¹⁹ GeV² cm⁻⁵
- They lack non-thermal astrophysical process
- Hence, the expected DM signal is clean with little background
- Gamma-ray studies from multiple dSphs result in most stringent limits on DM annihilation cross-sections
- In contrast, the DM signal expected from Galactic centers where the J factor is O(100) larger but the background is bright and structured

Why are white dwarfs good to probe DM?

October 30, 2019

Analysis

- Use 6 years of LAT data recording 15 Milky way dSphs
- Event selection:
 - Energy range 500 MeV 500 GeV
 - To avoid terrestrial gamma rays, events with zenith angles larger than 100° are rejected
 - Reject data during/around bright GRBs or solar flares
 - Extract Region of Interest, 10° x 10° square regions around each dSph
- Background:
 - Template modeled by data from another run in LAT which studies Galactic diffuse emission
 - The background is corrected for the dataset's intensity
- The data is divided into 24 bins of energy and 0.1° angular bins
- Bin-by-bin likelihood analysis of gamma-ray emission coincident with each dSph is performed

Results

- No significant gamma-ray excess found
- Constraints are placed on dark matter annihilating into bbbar, and other SM particles
- Comment on systematics:
 - J-factor estimation gives highest contribution
 - Diffuse background modelling
 - Instrumentation related factors

Dark Matter constraints

October 30, 2019

Compared to other experiments

October 30, 2019

Summary

- Gamma-ray and other telescopes provide excellent test bed to look for dark matter indirectly
- This is complementary to direct searches like LZ and collider searches performed at ATLAS and CMS
- Fermi LAT telescope looks for DM using white dwarfs, galactic center and also for peaks in the gamma-ray spectrum
- The data has been interpreted by many theorists to come up with constraints on particular models
- Stay tuned for more results from Fermi and other telescopes