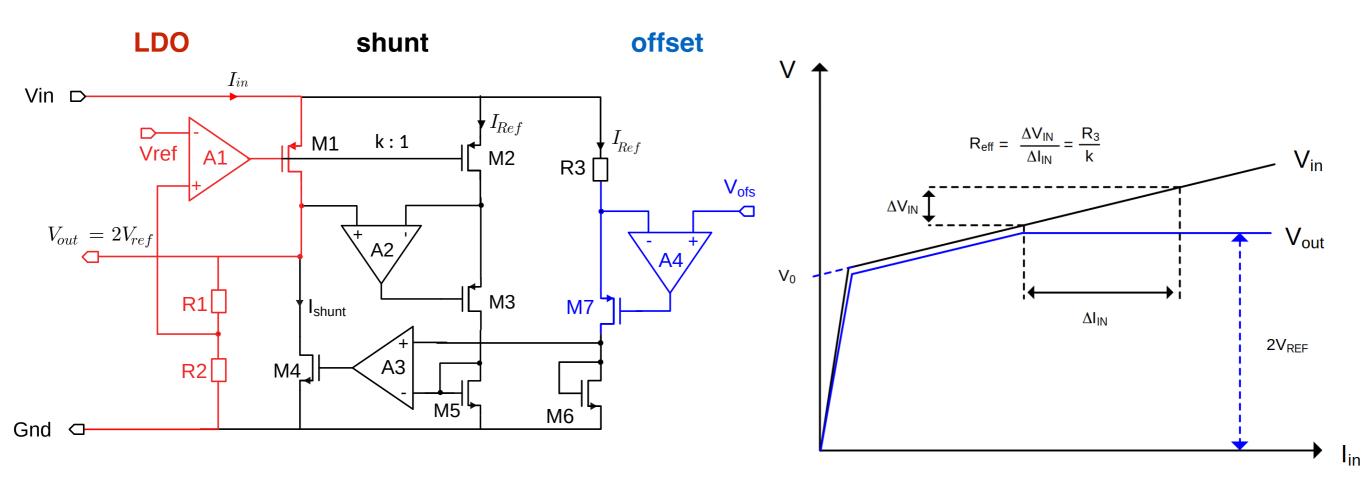
Update on SLDO Calibration

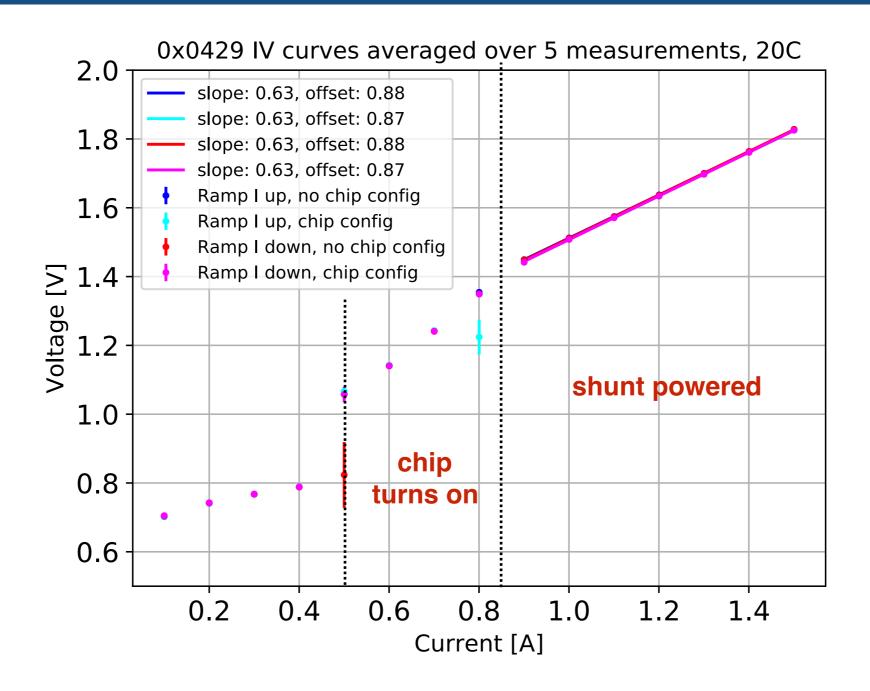
Aleksandra Dimitrievska, Maurice Garcia-Sciveres, Timon Heim, **Elodie Resseguie**

Lawrence Berkeley National Laboratory


November 8, 2019

- To set up serial power chain, need to understand operation in shunt mode
- Want to test the stability of shunt mode setting
 - Discuss IV curve results on SCCs and hybrid tested
 - Difficulty in measuring transients

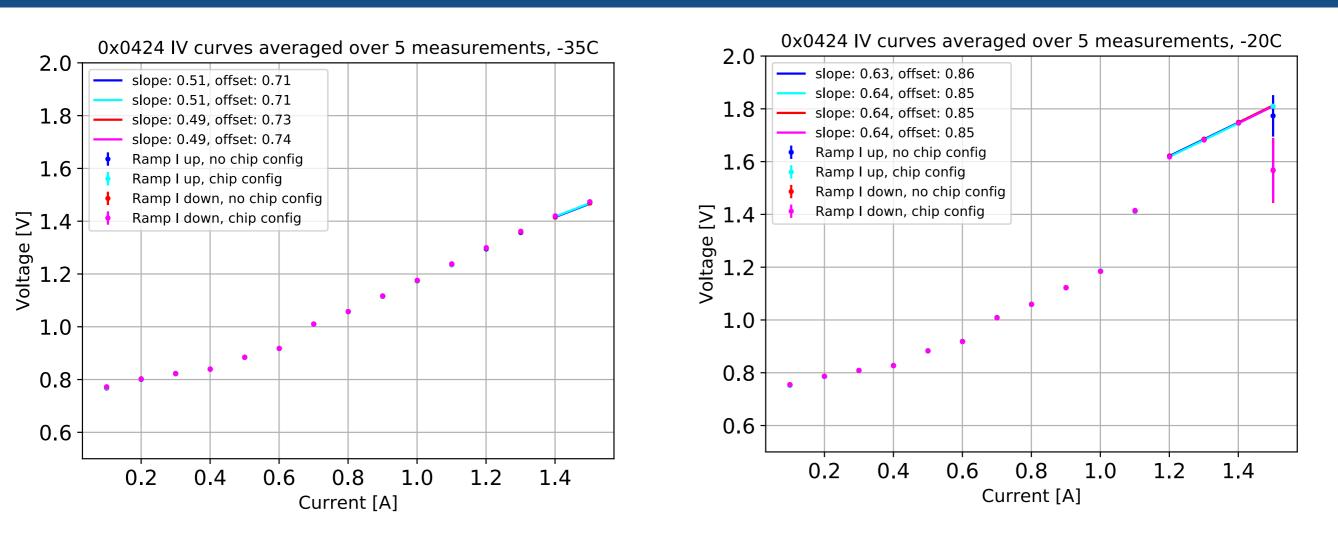
Serial powering: shunt mode


- Shunt current depends on Voffset and R3
- Want a small slope so don't consume too much current
 - Need to set offset and external resistors
 - Both of these are controlled by resistors on the SCC
- Measured to be:
 - RoffsA: 232k, RoffD: 226k
 - RextA: 1.15k, RextD: 1.07k

E. Resseguie (LBL)

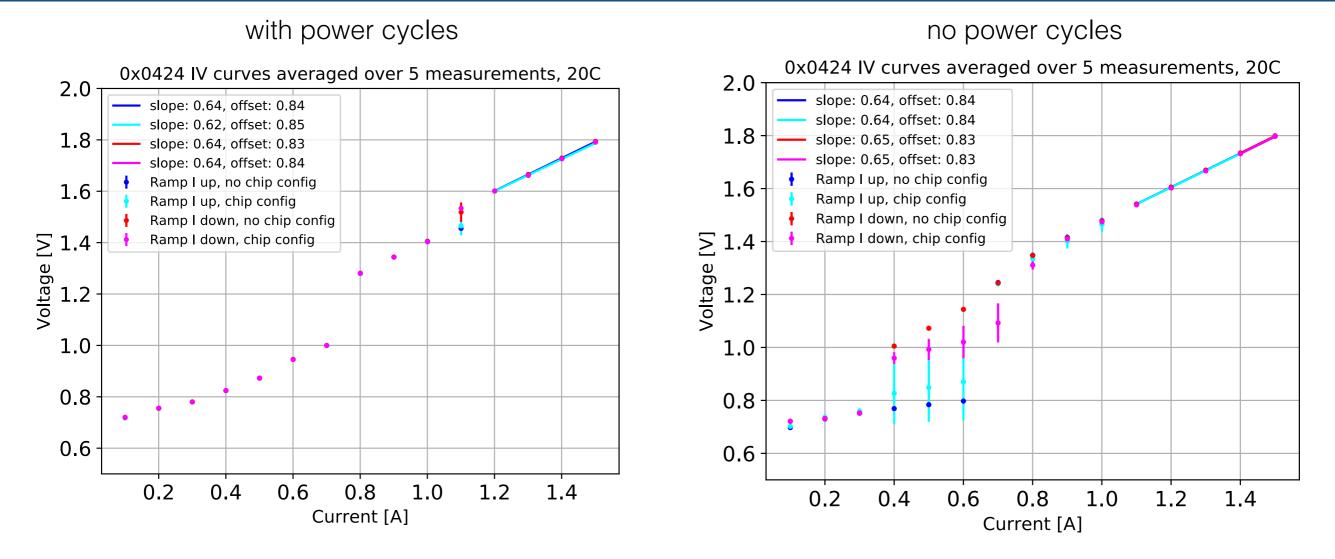
How to: I-V curves

- In constant current mode, vary the current and measure the voltage
 - Do a power cycle between each change in current
- Tests conducted
 - Ramp current up and ramp current down
 - Room temperature (~20C) and at -35C
 - With chip configuration and without chip configuration
- 5 current ramps are taken for each configuration to increase statistics


I-V curves for 0x0429

- Points are fit for voltages > 1.4 V
- Offset voltage close to 0.9 V (expected offset voltage)

E. Resseguie (LBL)


Chip turn-on issues

- 0x0424 does not start up at -35C, just like 0x796
- (see <u>slide 18-20</u> for voltage measurements as a function of temperature)
- At -20C, chip starts up and offset is at 0.85, similar to when the chip is warm
 - Note: last point at 1.5 A not included in the fit
- To be able to run this chip at -35C, need to turn it on at -20C then lower the temperature, <u>slide 21</u>

E. Resseguie (LBL)

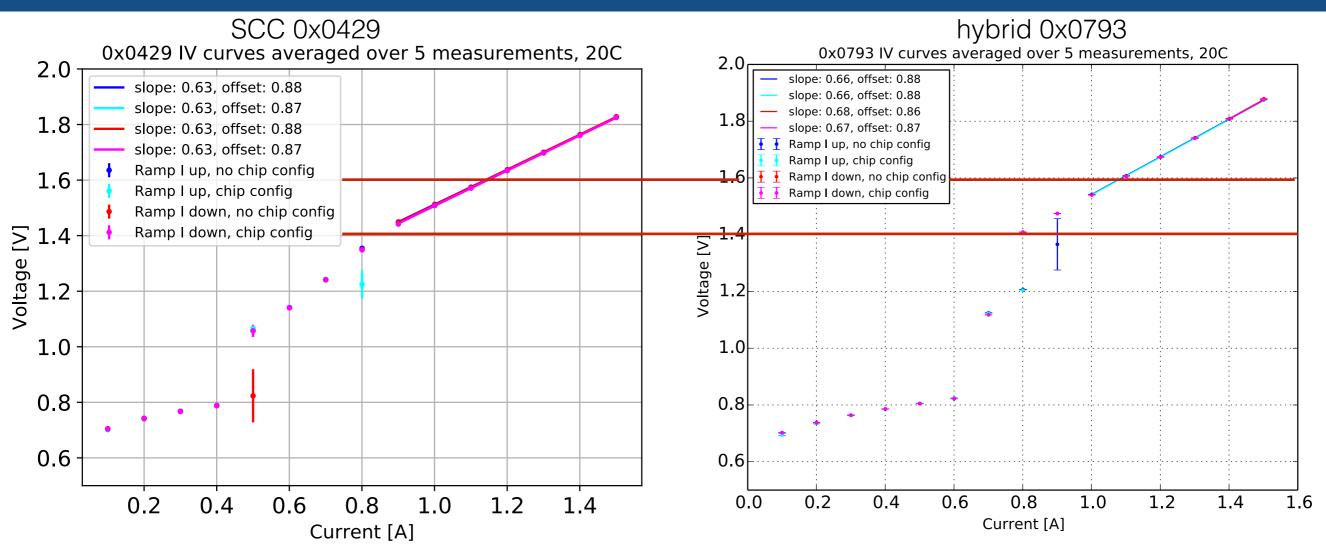
Impact of power cycling

- With power cycles, do not see difference between ramping the current up or down at chip turn-on
- No power cycles: Ramping current down produces larger voltages than ramping current up
- For QC, might want to power cycle in between each measurement

E. Resseguie (LBL)

Slope and offset depending on Iref

SCC	Iref settings	Trim settings	Temperature (C)	Offset [V]	Slope
424	7 (4.03 μA)	analog 22 digital 26	20	0.84	0.64
424	6 (3.91 µA)	analog 22 digital 26	20	0.84	0.65
424	8 (4.17 μA)	analog 22 digital 26	20	0.84	0.65
424	15 (5.00μΑ)	analog 22 digital 26	20		


- IV curves are in the backup, slide <u>24</u>
- No impact on the slope and offset when varying the lref by ± 1 setting

Hybrid testing

- Resistors with 0.1% tolerance used for external and offset resistors
- Note: could not measure Iref and trim voltages because MUX connection is not working

IV curve on hybrid

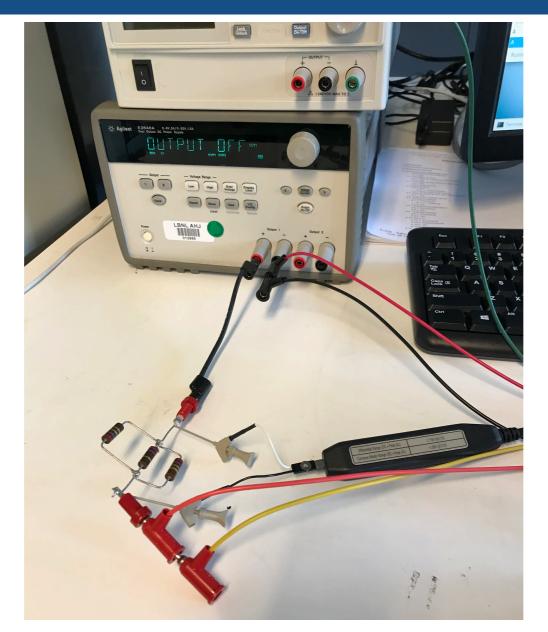
- Offset is about 0.88, slope is 0.67
 - Slope is steeper than for other chips
- Need to determine better procedure for turn
 - How low in current can we be at and still communicate with the chip?
- Seems that offset resistors are ~consistent across set of chips tested
- Would want to possible change the slope resistors

E. Resseguie (LBL)

Summary of slope and offset measurements

SCC	Iref settings	Trim settings	Temperature (C)	RlofsD [kΩ]	RlofsA [kΩ]	RextA [kΩ]	RextD [kΩ]	Offset [V]	Slope
429	6 (3.99 μΑ)	analog 23 (1.219 V) digital 22 (1.190 V)	20	225.4	232.3	1.1562	1.079	0.88	0.63
429	6 (3.99 μΑ)	analog 19 digital 22	-35	225.4	232.3	1.1562	1.079	0.91	0.62
796	8 (4.04 µA)	analog 23 (1.193 V) digital 25 (1.202 V)	20	225.6	232.6	1.157	1.075	0.84	0.63
424	7 (4.03 μΑ)	analog 22 (1.204 V) digital 26 (1.202 V)	20	225.3	232.4	1.1555	1.076	0.84	0.64
424	7 (4.03 μΑ)	analog 19 digital 26	-20	225.3	232.4	1.1555	1.076	0.85	0.64
793	-	analog 28 digital 22	20	not measured 226	not measured 232	not measured 1.15	not measured 1.07	0.87	0.67
793	_	analog - digital 22	-35	not measured 226	not measured 232	not measured 1.15	not measured 1.07	0.87	0.68

• Difference in offset and slope

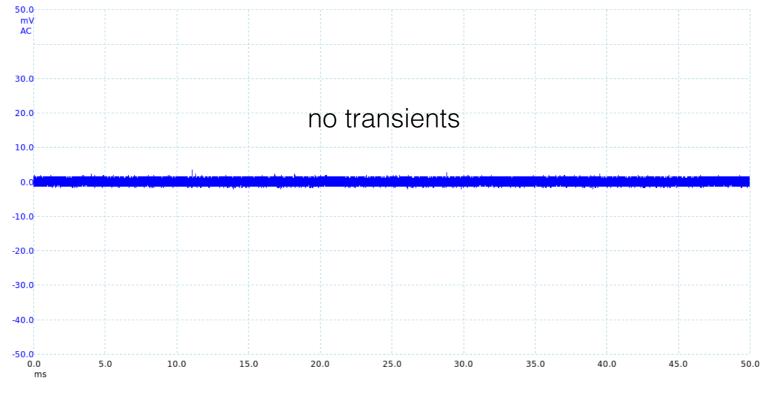

E. Resseguie (LBL)

Summary of voltages for 1.1A

SCC	Iref settings	Temperature (C)	Voltage [V]
429	6 (3.99 μΑ)	20	1.573 ± 0.001
796	8 (4.04 μA)	20	1.526 ± 0.002
424	7 (4.03 μA)	20	1.549 ± 0.002
424	6 (3.91 μΑ)	20	1.557 ± 0.002
424	8 (4.17 μA)	20	1.556 ± 0.003
793	-	20	1.609 ± 0.001
429	6 (3.99 μΑ)	-35	1.594 ± 0.001
424	7 (4.03 μA)	-20	1.413 ± 0.002
793	-	-35	1.546 ± 0.068

- Current value chosen from resistor tuning procedure
- At room temperature, voltages range from 1.53 V 1.61 V
- At cold temperatures, range from 1.55 V 1.59 V E. Resseguie (LBL) RD53a SLDO Update

Transient measurements



- Put a 1 Ohm resistor in series with the SCC
 - Measure the resistance of the SCC
 - Adjust the voltage limit
 - Current setting should be the one for which the values were optmized: 1.1 A
- Take noise scans which consume a lot of current

E. Resseguie (LBL)

Getting rid of the headroom

- Resistors were optimized for 20% headroom on both analog and digital voltages
- Need to get rid of headroom to see transients
- Reducing analog headroom by changing pre-amplifier values
 - M. Standke's <u>slides</u> about how current changes as function of preamp value
 - Differential: DiffPrmp, from 500 to 1000
 - Linear: LinPaInBias from 300 to 511
 - Synchronous: SyncIbiasp2 (120->500)
 - Voltage change after diff. and linear: -0.01, after sync pre-amp: -0.05V
- Reducing digital headroom: more difficult to do without changes Rext
 - Make DiffVth2 (50) > DiffVth1 (250)
 - Reduces Voltage by 0.3 V

E. Resseguie (LBL)

- There is variance between the offsets and slopes
 - At 1.1A, see variance in current of 0.8 V
- Transients have been surprisingly difficult to try to measure
 - Need to switch out resistors to get rid of headroom?
- Next steps:
 - Keep doing IV curves to get more statistics
 - Need to determine if the resistor values are appropriate or not
 - Measure this on triplet to see impact of chips in parallel on IV curve
 - Automate the scripts for obtaining and plotting the IV curves for QC

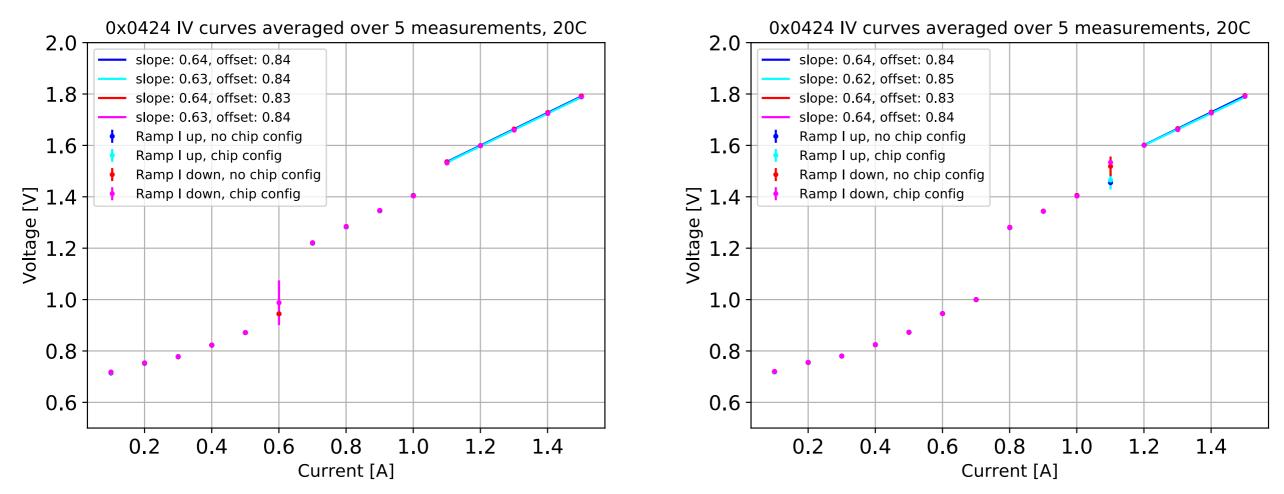
Resistors stuffed for testing

SCC	Iref settings	Trim settings	RlofsD [kΩ]	RlofsA [kΩ]	RextA [kΩ]	RextD [kΩ]	Analog current [A]	Digital Current [A]	Plugged Together [A]
433	6 (3.99 μΑ)	analog 24 (1.238V) digital 19 (1.210V)	225.6	232.7	1.166	1.084	0.488	0.538	1.025
429	6 (3.99 μΑ)	analog 23 (1.219 V) digital 22 (1.190 V)	225.4	232.3	1.1562	1.079	0.530	0.621	1.143 (powered) 1.148 (config)
796	8 (4.04 μA)	analog 23 (1.193 V) digital 25 (1.202 V)	225.6	232.6	1.157	1.075	0.601	0.624	1.216 (powered) 1.220 (config)
424	7 (4.03 μΑ)	analog 22 (1.204 V) digital 26 (1.202 V)	225.3	232.4	1.1555	1.076	0.572	0.639	1.198 (powered) 1.205 (config)

• 1.60V set on power supply


E. Resseguie (LBL)

Iref as a function of temperature


Iref (μΑ)	Temperature (C)
4.04	20
4.026	10
4.020	0
4.011	-10
4.008	-20
3.998	-35

• Small drop in Iref as a function of temperature

IV curves for 0x0424

in climate chamber

- 0x0424 does not have a pull-up resistor between VDDA and Vref
- Slightly lower offset than 0x429 (0.88 V vs. 0.84 V for 0x0424)
- Slightly higher offset when configuring the chip
 - Slight difference between ramp up/ramp down in chip turn-on

E. Resseguie (LBL)

Voltages as a function of temperature

temperature	VrefA	Vrefd	VDDA	VDDD	Power supply voltage
20.3	0.568	0.537	1.139	1.087	1.67
8.3	0.567	0.536	1.138	1.084	1.67
-1.4	0.566	0.535	1.136	1.081	1.67
-11	0.566	0.532	1.135	1.078	1.67
-20.4	0.565	0.530	1.134	1.075	1.67
-25.0	0.564	0.529	1.134	1.072	1.69 (although started up at 1.36)
-29.8	0.550	0.112	1.103	0.150	1.37
-30.0	0.565	0.528	1.133	1.070	1.69
-34.5	0.559	0.132	1.125	0.163	1.50
-35.3	0.547	0.116	1.098	0.151	1.37

- Power cycles between each measurement
- The chip turns on till about -25C then the chip does not turn on
 - Analog and digital voltages are low

E. Resseguie (LBL)

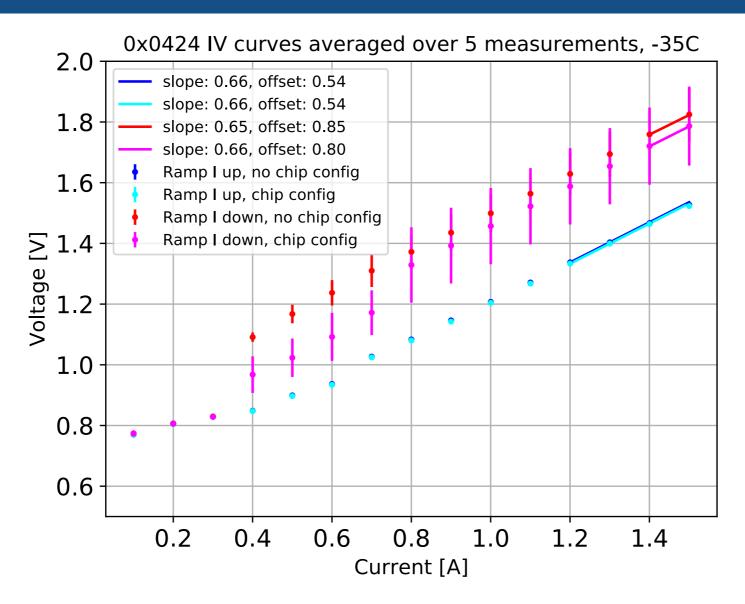
Voltages as a function of temperature

temperature	VrefA	Vrefd	VDDA	VDDD
20	0.566	0.535	1.137	1.082
8.8	0.566	0.534	1.136	1.079
-1.1	0.565	0.532	1.134	1.077
-10	0.564	0.530	1.133	1.073
-20	0.564	0.529	1.132	1.070
-35	0.563	0.526	1.130	1.065

- No power cycles between each measurement
- The chip is functional if it is already turned on before lowering to -35C

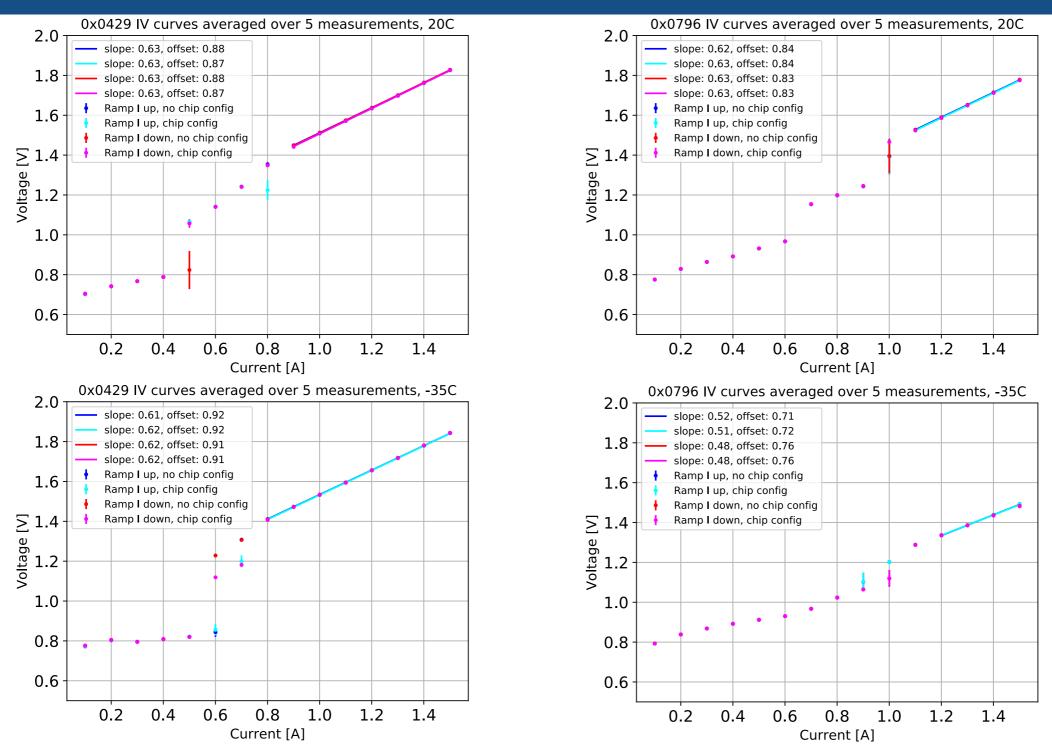
Voltages as a function of temperature

Adding 300k between Vref and VDD (for both analog and digital)

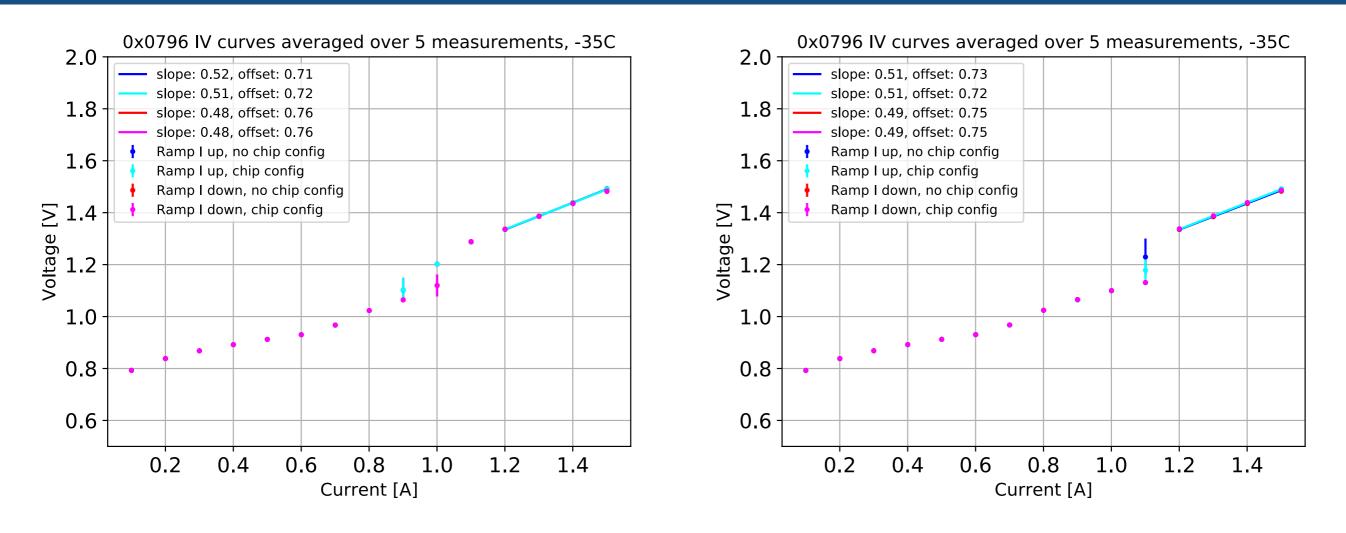

Powering pLL from an external 1.15 V source

Temperature	VrefA	VrefD	VDDA	VDDD	PS voltage
20	0.591	0.560	1.187	1.133	1.67
8.7	0.590	0.559	1.184	1.129	1.67
-0.9	0.589	0.556	1.183	1.126	1.67
-10.0	0.589	0.555	1.181	1.121	1.68
-20.4	0.588	0.554	1.180	1.119	1.69
-25.3	0.588	0.553	1.180	1.118	1.69
-30.4	0.587	0.552	1.180	1.118	1.38, 1.51, 1.70
-35.1	0.564	0.118	1.133	0.155	1.37
					<u> </u>
				I	
Temperature	VrefA	VrefD	VDDA	VDDD	PS voltage
Temperature 18.4	VrefA 0.567	VrefD 0.536	VDDA 1.138	VDDD 1.085	PS voltage 1.67
		and the second			
18.4	0.567	0.536	1.138	1.085	1.67
18.4 -1.4	0.567 0.566	0.536 0.534	1.138 1.137	1.085 1.079	1.67 1.68
18.4 -1.4 -10.9	0.567 0.566 0.566	0.536 0.534 0.532	1.138 1.137 1.135	1.085 1.079 1.076	1.67 1.68 1.68
18.4 -1.4 -10.9 -20.5	0.567 0.566 0.566 0.565	0.536 0.534 0.532 0.531	1.138 1.137 1.135 1.134	1.085 1.079 1.076 1.073	1.67 1.68 1.68 1.68

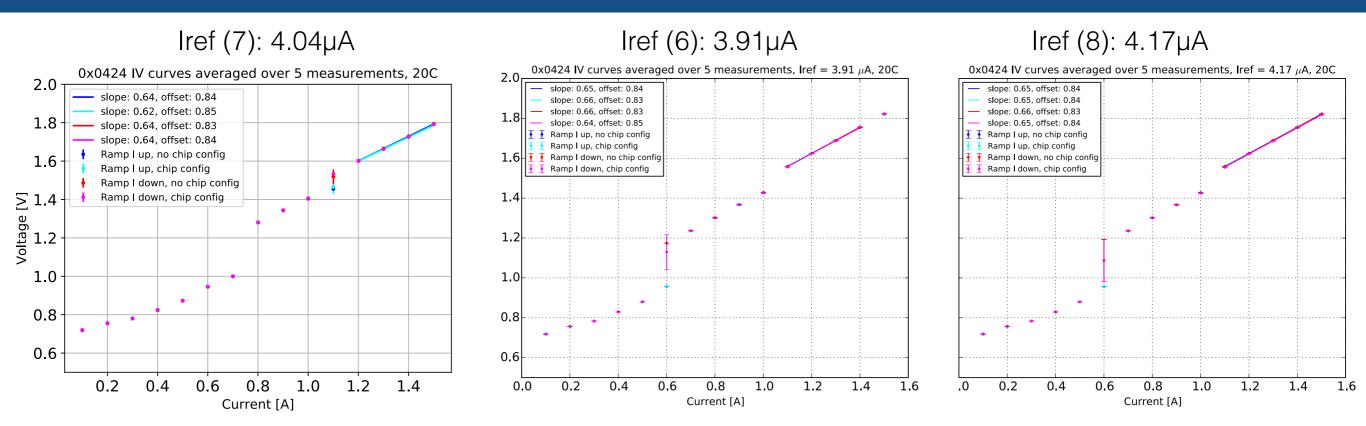
• Cannot get the chip to power on at lower temperature


E. Resseguie (LBL)

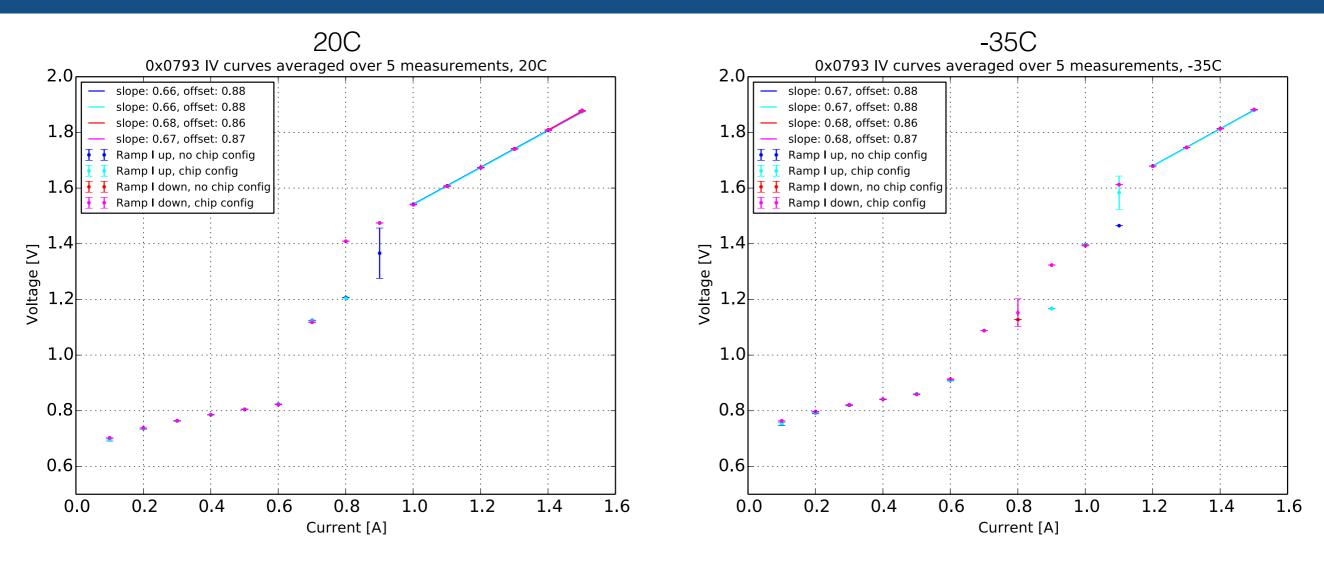
IV curves at -35C, no power cycle


- When chip already powered at -35C and ramping down (red curve), get expected offset
- Chip is functional at -35C as long as it is not power cycled or have too low of current

Comparing I-V curves


- 0x0796 has a resistor between VDDA and Vref: offset is lower for 0x796
- Drop in voltage for 0x796 from measurement at 20C to -35C
 - E. Resseguie (LBL)

0x796 after adjusting Iref at -35C


- Iref dropped 0.05 μ A when going from +20 C to -35 C
- Iref was adjusted from setting 7 to setting 8 so Iref was 4.1 μ A
 - Iref is not very dependent on current, see backup
- No impact on the offset

IV curve depending on Iref

• Iref is the reference current, usually set to 4µA

IV curve on hybrid

- Offset is about 0.88, slope is 0.67
 - Slope is steeper than for other chips
- Chip turn-on is 1.6V (warm) 1.65V (cold): higher than for other chips
- Seems that offset resistors are ~consistent across set of chips tested
- Would want to possible change the slope resistors
- Note: could not measure Iref and trim voltages because MUX connection is not working

E. Resseguie (LBL)