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Cosmology background

Dark matter is abundant, and a crucial component in the formation and evolution of structure 
in the universe, but can’t see it -- only have key “observables” like Lyman-alpha (Lya) flux.

● H gas is gravitationally coupled to the 
filaments formed by large-scale dark matter 
distributions

● Additionally, the gas distribution depends on 
collisional (i.e., hydrodynamic) effects

● Density and temperature fluctuations 
determine how much neutral H is present, 
which absorbs Lya wavelengths

https://docs.google.com/file/d/19Y4SDqHLFjUU5WwKjfbALa3IyNnkbY4q/preview


● Characteristic pattern of density fluctuations is 
“imprinted” into spectrum of observed light from 
distant quasars

● Lots of quasars, and some are very far! Lya signal is 
capable of tracing density fluctuations as far back as 
when universe was just 1 Gyr old.

● Key point: the redshift of Lya absorbers is 
determined by their line-of-sight velocity:

○ Mainly, cosmological redshift due to their 
extreme distance (receding due to expansion 
of universe)

○ Also, the local velocity of the absorbing gas 
(“peculiar velocity”)

Cosmology background: Lyman-alpha flux

McQuinn (2016)



The gas velocity along the line of sight warps 
the real-space flux field to what is observed in 
redshift space, which is all we can see.

This presents an additional challenge to the 
task of modeling Lya flux to match 
observations at percent-level accuracy.

Cosmology background: Lyman-alpha flux



● High resolutions (spatial and temporal) required to model 
density fluctuations & complex physics -- cost can be 
O(105) - O(107) CPU hours

● Accurate modeling of hydrodynamic effects required to get 
Lya flux, which adds significant expense to simulations

● Finding a reliable method to reconstruct Lya flux from 
N-body simulations (non-hydrodynamic) has been a 
long-standing research goal

Do it with neural networks, of course!

No analytical solution to these complex, multi-physics, multi-scale interactions -- must use 
numerical approaches. Challenges:

Numerical simulations: challenges in cost & scale



N-body + hydrodynamic simulation, with physical fields:

● Dark matter density
● Baryon density, temperature, velocity (x,y,z)
● Lya flux, real-space
● Lya flux, redshift-space

Defined on uniform grid, 10243 voxels, with periodic 
boundary conditions

Reserve top 1/8th for validation set

Dataset: Nyx simulation

896

1024

1024

128

Train

Test



During training, randomly crop (x,y) pairs from simulation data:

Dual-network pipeline

Flux mapping 
network

Warping
 network

3D sub-volumes, 
size 1283

2D slices, size 
128x1024

● Both networks trained with L1 loss, which is sufficient for good results

● Additional adversarial loss (given by a discriminator network) was useful in providing slight 
refinements to the output of the 3D flux mapping network

Dark matter
density

Lya flux, 
real-space

Lya flux, redshift-spaceReal-space Lya + velocity field



Architecturally, networks are simple U-Nets:

● Originally developed for biological image segmentation, 
U-Nets are being used in many fields now -- esp. in recent 
cosmological deep learning applications 
(He et al. 2019, Ramanah et al. 2019, Zhang et al. 2019,...) 

● U-Net design allows encoding/decoding of high-level features 
while using skip connections to pass low-level details and 
easily backpropagate gradients to early layers

Network Architectures

Isola et al. (2018)

● Side note: the “bottleneck” layer of the U-Net is not always useful …

○ After downsampling to a bottleneck layer with dimension of 1 in all spatial directions (with N 
high-level feature encoding channels), as is done in the original pix2pix mode, we found the 
bottleneck layer to be completely ignored by the next up-sampling layer. This happened in 
several datasets, so beware!



During inference, chain networks together:

Dual-network pipeline
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● Qualitatively, the pipeline captures features well across a range of scales

● Sharp transitions and extreme redshift-space distortions seem to be the most 
prominent failure modes

Results
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Results: statistical analysis

Two key statistics used in Lya flux analysis: flux PDF and 1D power spectrum

Our network significantly reduces the relative error incurred by existing methods



Conclusions & next steps

By training on small volumes and predicting on large ones, we have reproduced the useful 
characteristics of existing techniques while reducing the relative error by an order of 
magnitude.

These initial results open the door to several next steps:

● Re-train the networks using true N-body only simulations paired with full-physics 
simulations (approx. gas velocities from dark matter velocity field)

● Learn a mapping from dark matter to full gas distribution variable set (density, 
temperature, velocity) to fully replace hydrodynamic component of these simulations


