



# Light shining through walls

Sai Neha Santpur 7 November 2018 290E, Spring 2018

# Trivial right?







## Trivial right?





 Depends on what we define as light and a wall

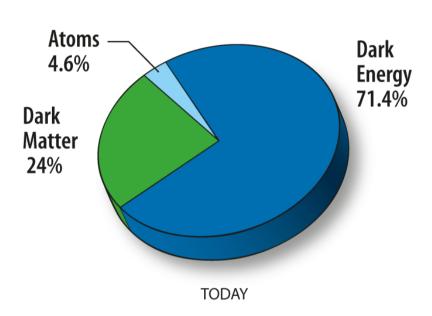


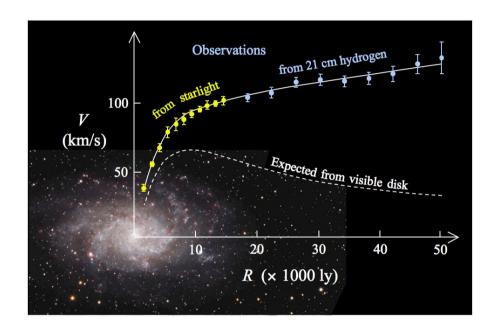
#### What are axions?

- Hypothetical particles predicted by some Beyond Standard Model theories
- Proposed to explain
  - Strong CP problem
  - Dark matter existence

## Strong CP problem

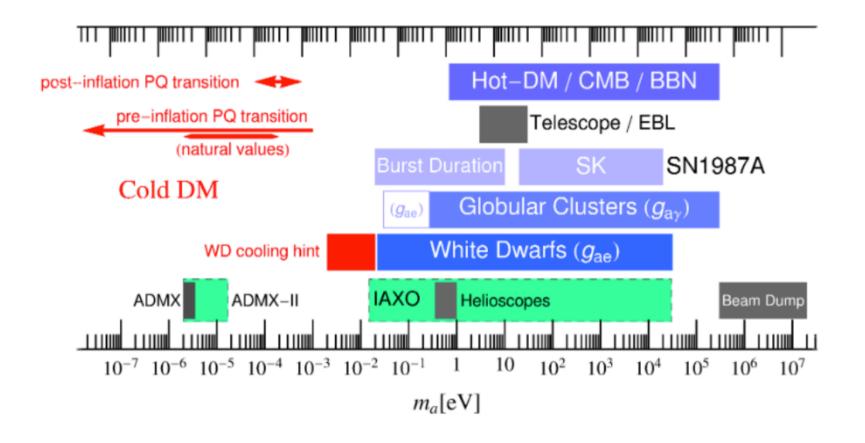
- CP is violated in weak interactions, but what about strong?
- Strong interaction lagrangian allows the term:


$$\mathcal{L}= hetarac{1}{16\pi^2}F^a_{\mu
u} ilde{F}^{\mu
u a}$$
 where  $ilde{F}^a_{\mu
u
ho\sigma}=rac{1}{2}\epsilon_{\mu
u
ho\sigma}F^{
ho\sigma a}$ 


- CP violated when  $\theta \neq 0$  and quark mass phase  $\neq 0$
- This terms contribute to neutron electric dipole moment (d<sub>n</sub>) → O(10<sup>18</sup> e.m)
- Experimental observation: |d<sub>n</sub>| ~ 10<sup>-33</sup> e⋅m
- This in turn limits CP violation in strong force to <10-9</li>
- Good reference: TASI lectures on strong CP problem here

## Strong CP problem

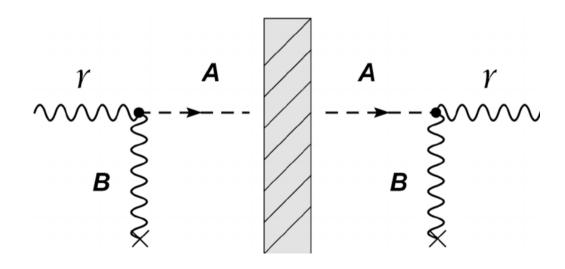
- In Peccei-Quinn theory:
  - Replace  $\theta$  by a dynamical field
  - Axion is the particle associated with this new field
  - The term in the Lagrangian that describes this field leads to cancellation of the earlier CP violating terms, making the CP phase ~0


#### Dark matter

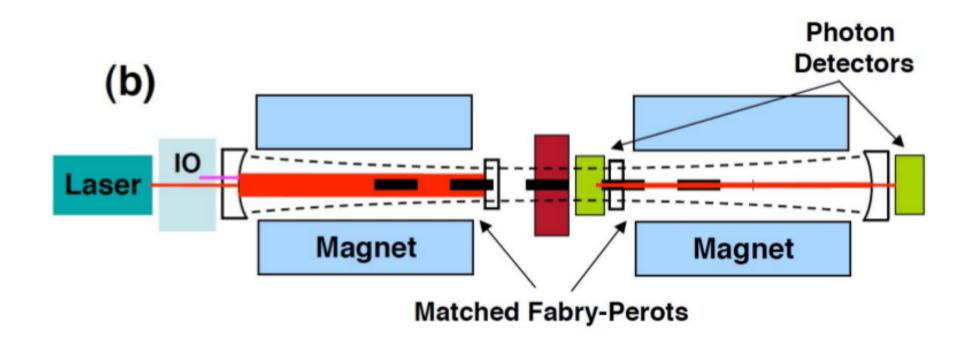




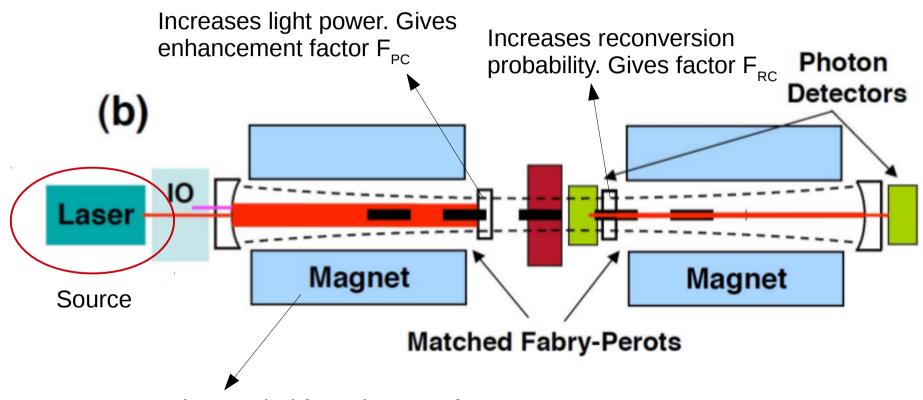
• With right mass, axions can be the dark matter


### What masses are we talking about?




## Light shining through walls

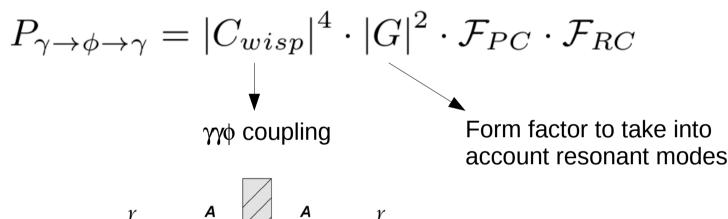
#### • Idea:


- Shine photons at a wall and see how many of them come out the other side
- If photons do couple to axions, then there is probability associated with photon-axion oscillations
- Can look for axions, dark photons and other WISP (weakly Interacting Slim Particles)



## Experimental setup




## Experimental setup



Magnets may be needed for axions not for other WISPs. Doesn't hurt to have it

## Oscillation probability

Probability is given by



### Oscillation probability

In terms of measured quantities

$$P_{\gamma \to \phi \to \gamma} = \frac{\omega}{\sqrt{\omega^2 - m_\phi^2}} \cdot |C_{wisp}|^4 \cdot \mathcal{F}_{PC} \cdot \mathcal{F}_{RC} \cdot \sin^4\left(\frac{q \cdot l}{2}\right)$$
Length of the experiment 
$$q = |n \cdot \omega - \sqrt{\omega^2 - m_\phi^2}|$$
where n is the refractive index

For dark photon and axion like particles,

$$|C_{hp}|^2 = 4\chi^2 \cdot \frac{m_\phi^4}{\left(m_\phi^2 + 2\omega^2(n-1)\right)^2}; \ |C_{alp}|^2 = 4 \cdot \frac{(g_{a\gamma\gamma}\omega B)^2}{\left(m_\phi^2 + 2\omega^2(n-1)\right)^2}$$

## Oscillation probability

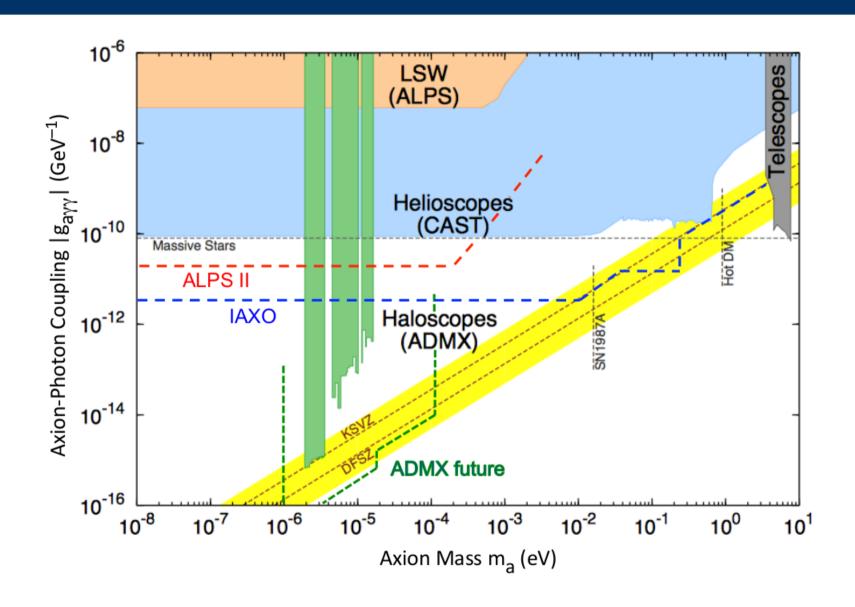
In terms of measured quantities

$$P_{\gamma \to \phi \to \gamma} = \frac{\omega}{\sqrt{\omega^2 - m_\phi^2}} \cdot |C_{wisp}|^4 \cdot \mathcal{F}_{PC} \cdot \mathcal{F}_{RC} \cdot \sin^4\left(\frac{q \cdot l}{2}\right)$$
Length of the experiment 
$$q = |n \cdot \omega - \sqrt{\omega^2 - m_\phi^2}|$$
where n is the refractive index

Making some approximations,

$$P_{\gamma \to \phi \to \gamma} = \frac{1}{16} \cdot \mathcal{F}_{PC} \mathcal{F}_{RC} \cdot (g_{a\gamma\gamma}Bl)^4 = 6 \cdot 10^{-38} \cdot \mathcal{F}_{PC} \mathcal{F}_{RC} \cdot \left(\frac{g_{a\gamma\gamma}}{10^{-10} GeV^{-1}} \frac{B}{1T} \frac{l}{10m}\right)^4$$

# LSW experiments


| Experiment                | $\omega$      | $P_g$                                                                | $\beta_g$ | Magnets                                                        |
|---------------------------|---------------|----------------------------------------------------------------------|-----------|----------------------------------------------------------------|
| ALPS (DESY) 61,62         | 2.33 eV       | 4 W                                                                  | 300       | $B_g = B_r = 5 \text{ T}$ $L_g = L_r = 4.21 \text{ m}$         |
| BFRT (Brookhaven) [64,65] | 2.47 eV       | 3 W                                                                  | 100       | $B_g = B_r = 3.7 \text{ T}$<br>$L_g = L_r = 4.4 \text{ m}$     |
| BMV (LULI) [66,67]        | 1.17 eV       | $8 \times 10^{21} \frac{\gamma}{\text{pulse}} \text{ (14 pulses)}$   | 1         | $B_g = B_r = 12.3 \text{ T}$<br>$L_g = L_r = 0.4 \text{ m}$    |
| GammeV (Fermilab) [68]    | 2.33 eV       | $4 \times 10^{17} \frac{\gamma}{\text{pulse}} (3600 \text{ pulses})$ | 1         | $B_g = B_r = 5 \text{ T}$ $L_g = L_r = 3 \text{ m}$            |
| LIPSS (JLab) [69,70]      | 1.03 eV       | 180 W                                                                | 1         | $B_g = B_r = 1.7 \text{ T}$ $L_g = L_r = 1 \text{ m}$          |
| OSQAR (CERN) [71],[72]    | $2.5~{ m eV}$ | 15 W                                                                 | 1         | $B_g = B_r = 9 \text{ T}$ $L_g = L_r = 7 \text{ m}$            |
| BMV (ESRF) [73]           | 50/90  keV    | $10/0.5~\mathrm{mW}$                                                 | 1         | $B_g = B_r = 3 \text{ T}$<br>$L_g = 1.5, L_r \sim 1 \text{ m}$ |

#### Current limits and future

- Current limits on photon-axion coupling is: g < 5\*10E-8 /GeV</li>
- Mass sensitivity:  $m<0.001\omega$
- Future experiments:
  - ALPS II, JURA
  - Future sensitivity upto g~10E-11 /GeV → expected to outperform astrophysics limits

| Parameter                         | Sensitivity                                         | ALPS I          | ALPS II          | JURA              |
|-----------------------------------|-----------------------------------------------------|-----------------|------------------|-------------------|
| Effective laser power $P_{laser}$ | $g_{a\gamma\gamma} \propto P_{laser}^{-1/4}$        | $1\mathrm{kW}$  | $150\mathrm{kW}$ | $1000\mathrm{kW}$ |
| $\mathcal{F}_{RC}$                | $g_{a\gamma\gamma} \propto \mathcal{F}_{RC}^{-1/4}$ | 1               | 40,000           | 100,000           |
| Length (B field) l                | $g_{a\gamma\gamma} \propto (l)^{-1}$                | 4.4 m           | 88 m             | 286 m             |
| Magnetic field $B$                | $g_{a\gamma\gamma} \propto (B)^{-1}$                | $5.0\mathrm{T}$ | $5.3\mathrm{T}$  | 13 T              |

## Future projections



## Summary

- Light Shining through Walls experiments can be used to probe photon-axion (WISP) coupling
- Probe large phase space of axion masses and couplings
- Future LSW experiments are expected to out do the astrophysics limits
- Very exciting times ahead!

 References: Annual Review of Nuclear and Particle Science, Vol. 65: 485-514 (2015)