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The NOVA Experiment

Long-baseline accelerator neutrinos

Near-far comparison between Fermilab and Ash River, MN (810 km
away)
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Different neutrino interactions

 Charged current e and
- Resonant
- Deep Inelastic

- Quasi-elastic
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Traditional methods

» LID (Likelihood-based selector)
- Reconstruct tracks and showers
- Reconstruct energy

- Into a standard MLP neural network (multi-layer
perceptron aka “plain old” neural network)

 LEM (Library event matching)
- Generate millions of simulated events
- Use figure of merit to compare real events to library

 These work OK but there are problems



Obstacles

 LID relies on track and shower reconstruction
- Uses dE/dx along shower, for example

- These are 2 views of the same event...how many
tracks are there?

* LEM Is expensive - |
- 77x10s events!  ° | ¥
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* |s there a better way



Machine learning!

* Yes it's a fad...doesn’t hurt to try

* Basic idea y N Event
dEe\alteant ome crazy func\n/\@class
- Construct a function of T 4
- )\/
many parameters

- Input: 1 physics event; output: event classification
- Fit that function to all of your data (aka train it)

* Implementation
- (Matrix multiplication + non-linearity) x \E \g\/
- “Fully connected”
— There are other architectures too



Convolutional networks (CNNSs)

Useful for images or image-like data
Stack of Iimages = “channels” (e.g. RGB)

Convolution operation

- One large matrix - many small “filters”

- Apply each filter to each patch of input image
- Each filter generates one channel of output

Benefits:
- translational invariance

- semantically similar to how humans recognize
Images (and we’re pretty good at it)



Convolution example

As _,.\
This is a simple example because the image has only 1 channel. .ﬁ.
Afilter has access to all of the channels in an image. \ /
-



What.

* There’s such a thing as 1x1 convolutions
e Better to think of it as 1x1xN

e Purpose is to compress an image with N
channels down to a single channel

e So with M < N different 1x1 convolutional filters
you can compress an N-channel image into an
M-channel one - saves computational power



Let’'s go deeper...

» Google researchers invented the “inception
module”

« A mini-CNN that can be embedded inside
another CNN. Without adding much computing
time
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The look on my face when my family asks “what are
neutrinos made out of”
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Putting 1t all together
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So does 1t work?

First some asides

Training this CNN took 4.7M simulated events
— compare to 77/M for the LEM technique

Extra training events were created by adding
noise to and/or mirror-reflecting existing events

No track or shower reconstruction (like in LID)

* Energy reconstruction is performed on each cell

but not on tracks or showers
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Yes, It works
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Event better than LEM and LID

« Matches the efficiency of these methods for v,
at 57% and beats the efficiency for v, 49% to
35%

 Now In use for standard NOvVA physics results

For this analysis a new v, CC classifier was developed
to select a signal sample with improved purity and efh-
ciency. The Convolutional Visual Network (CVN) [14] is
a convolutional neural network and was designed using
deep learning techniques from the field ot computer vi-
sion [15] [16]. Recorded hits in the detectors are formed
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v_appearance results
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The latest parameter plot

e NOVA, May 2017
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Any guestions?

Thanks for listening LKELIHOOD Y0U LILL GET CODE LIORKING

BASED ON HOU YOURE SUPFOSED TO INSTALL IT:

Even during reading week VeRYLiesy
APP SIORE

When you could be studying or VAER.
sleeping 6B LK

SOURCEFORGE LINK
GEDCITIES/TRIPOD LINK
COPY-AND-PASTE

EXAVIPLE. CODE FROM
PAPER’S APPENDIX

Or Complllng code ANYHING THAT “REQUIRES
ONLY MINIMAL C\gﬂﬂﬁmﬁﬁm
ALL PHYSICS CODE> | Ao T

UNLIKELY
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