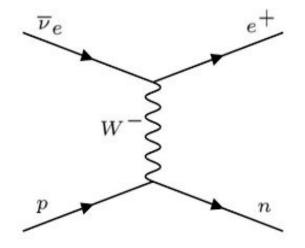
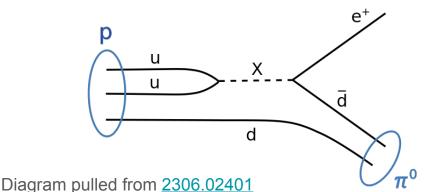


William Matava


Roadmap

- What/Why proton decay?
- Iron-Calorimeter-Based Searches
 - Frejús Experiment
 - Soudan Experiments
- Water-RICH-Based Searches
 - IBM Experiment
 - (Super)-Kamiokande Experiment
- Where We are Now
 - Current limits
 - Future experiments

What/Why Proton Decay?


'Proton Decay' in the Standard Model

- We know protons can decay inside nuclei: $p \rightarrow n \nu_e e^+$
 - Only energetically permissible due to nuclear potential
- If we're looking free-proton decay:
 - Lightest baryon => Can't decay to another baryon
 - Baryon number +1 => Needs to decay to at least one baryon
- Nothing interesting here...

Proton Decay Modes in BSM Physics

- B and L conservation are baked into the standard model
 - GUTs relax these symmetries!
- Ex: 'dimension 6' operators (B-L conservation):
 - $_{\odot}$ $\mathcal{L}_6 \approx \frac{1}{M^2} q q q l + \text{h.c.}$
 - Proton can decay to anti-lepton and meson!
- Dominant decay path is model dependent
 - Pick your favorite GUT!

 $p \to e^+ \pi^0$ $p \to \mu^+ \pi^0$ $p \to \nu K^+$

William Matava

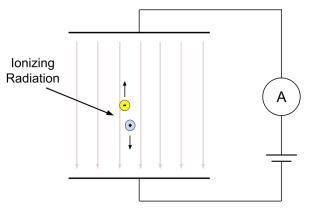
Diversity in Lifetimes

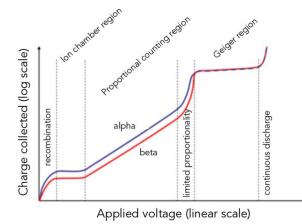
- Theorists can't agree on the total lifetime of a proton should be
 - For reference, I have $O(10^{28})$ protons in me!
 - I'll be waiting between 1 and 10^{11} years to feel one decay...

Model class	References	Lifetime [years]
Minimal SU(5)	Georgi & Glashow [21]	$10^{30} - 10^{31}$
Minimal SUSY SU(5)	Dimopoulos & Georgi [22]; Sakai & Yanagida [23]	
SUGRA SU(5)	Nath, Chamseddine & Arnowitt [24]	$10^{32} - 10^{34}$
SUSY (MSSM/ESSM) $SO(10)/G(224)$	Babu, Pati & Wilczek [25]	$2\cdot 10^{34}$
SUSY (MSSM/ESSM, $d = 5$) SO(10)	Lucas & Raby [26]; Pati [27]	$10^{32} - 10^{35}$
$SUSY SO(10) + U(1)_{fl}$	Shafi & Tavartkiladze [28]	$10^{32} - 10^{35}$
SUSY $(d = 5)$ SU(5) – option I	Hebecker & March-Russell [29]	$10^{34} - 10^{35}$
SUSY (MSSM, $d = 6$) SU(5) or SO(10)	Pati [27]	$\sim 10^{34.9\pm1}$
Minimal non-SUSY SU(5)	Doršner & Fileviez-Pérez [30]	$10^{31} - 10^{38}$
Minimal non-SUSY $SO(10)$		
SUSY (CMSSM) flipped SU(5)	Ellis, Nanopoulos & Walker [31]	$10^{35} - 10^{36}$
GUT-like models from string theory	Klebanov & Witten [32]	$\sim 10^{36}$
Split SUSY $SU(5)$	Arkani-Hamed et al. [33]	$10^{35} - 10^{37}$
SUSY $(d = 5)$ SU(5) – option II	Alciati et al. [34]	$10^{36} - 10^{39}$

Table pulled from <u>2306.02401</u>

Detector Shopping List


- A **bunch** of protons
 - $\circ \quad \text{High mass} \quad$
 - (ton-yrs. exposure will start to scratch the lower bounds)
 - Scalable/cheap
 - Ideally 'free' protons (hydrogen)
- Sensitivity to relativistic leptons; photons
 - Neutral pion decays to two gammas
 - Need particle identification (resolve individual tracks!)
- Low backgrounds
 - Radiopurity considerations
 - Underground laboratory


 $p \rightarrow e^+ \pi^0$ $p \rightarrow \mu^+ \pi^0$ $p \to \nu K^+$

Iron-Calorimeter Detectors

Gas Ionization Detectors

- Biased capacitor with ionizable gas as a dielectric
 - Impingent radiation produce e⁻ via primary ionization
 - e⁻ pulled to electrode, producing secondary ionization (gain!)
 - Electrons reach electrode, read as a current
- Bias determines amount of secondary ionization
 - Geiger Mode:
 - All ionizations looks the same (counter)
 - Proportional Mode
 - Signal scales w/ original ionization
- Cons:
 - Dead Time
 - No position sensitivity

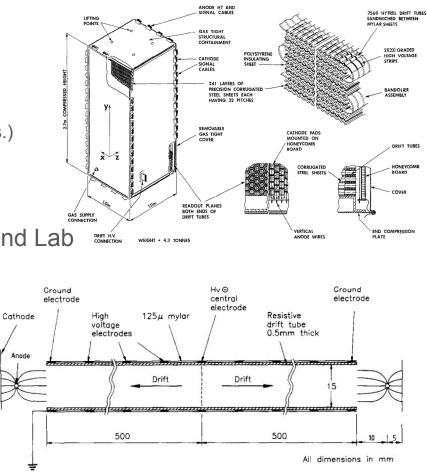
Plot pulled from Wikipedia


William Matava

Iron-Calorimeters

- One ionization detector isn't much good for proton decay
 - We need to be able to reconstruct tracks of leptons and gammas!
- Idea: Get a bunch of independent ionization detectors together
 - Position resolution limited by size of detectors!
- Separate detectors with sheets of iron
 - Particles flying through iron will produce secondary particles to interact in ionization chamber
 - o dE/dx also helps with PID

Frejús Experiment

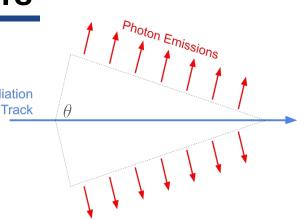

- 912-Layer 'Sandwich'
 - 'Flash tubes' (5x5 mm²)
 - Gaseous ionization chambers
 - O(1s) dead time; triggered by geiger tubes
 - Operated in proportional-mode
 - Geiger tubes' (15x15 mm²)
 - ~coaxial gaseous ionization chambers
 - Used for triggering; in geiger mode
 - Iron layers (provide attenuation; PID)
- Original occupant of Modane Underground Lab
 - Operational from 1984 to 1988

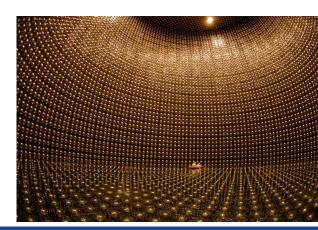
William Matava

Soudan Experiments

- High density ionization drift chambers
 - 7650 close-packed cylindrical drift tubes (x/y res.)
 - Separated by corrugated iron sheets
 - Electrons drift along long dimension
 - Drift time => z resolution (TPC!)
- Original experiment at Soudan Underground Lab
 - Soudan I (30 T) operational from 1981-1982
 - Soudan II (960 T) operational from 1989-2001

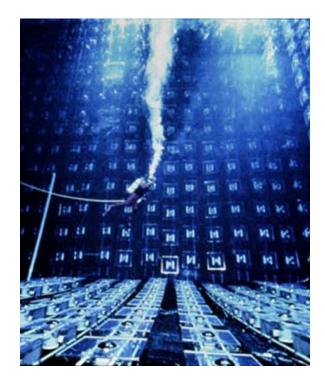
Figures pulled from *The Soudan 2 Proton Decay Experiment*


William Matava


Water-RICH Detectors

Ring-Imaging Cherenkov (RICH) Detectors

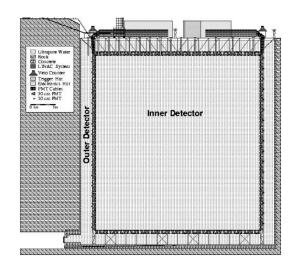
- Iron and gas are expensive...
- Idea: Fill a tank with water; look for cherenkov light! Radiation
 - Threshold: $\beta > \frac{1}{n}$
 - Opening Angle: $\cos heta = rac{1}{neta}$
 - PMTs along the outer wall to detect light
- Advantages:
 - 'Cheap' (water has n ~ 1.33)
 - Allow developing kT/MT scales!
 - Ultra-purity helps with transparency; radiopurity
 - 2 H's per molecule (free protons!)
 - Multipurpose (neutrino physicists will help!)
 - Really cool pictures



Figures pulled from DOE Office of Science

William Matava

Irvine-Michigan-Brookhaven (IMB) Experiment


- Water-base RICH detector
 - 8 kTon ultra-pure water
 - ~1 % photocathode coverage
 - <1% of photons detected...
 - No muon veto
- Located in Fairport salt mine
 - Simultaneous to Soudan/Frejus experiments
 - Operational from 1982 to 1991
 - Tragic ending with a leak...

Picture pulled from University of Michigan

(Super) KamiokaNDE

- Water-base RICH detector
 - (50 kTon) 1 kTon of ultra-pure water
 - Inner detector (containing fiducial volume):
 - Bulk of the volume
 - (40%) 20% photocathode coverage
 - Outer detector (muon veto):
 - Optically isolated from ID
- Located at Kamioka Observatory
 - Kamiokande operational 1983-1995
 - Super-K operational from 1996-Present
 - Hyper-K planned for 2027

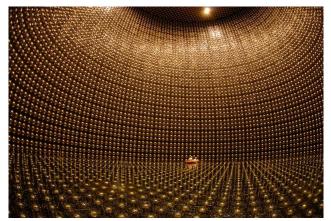


Diagram pulled from *The Super-Kamiokande Detector*

William Matava

Event Reconstruction @ Super-K

- Raw Signal is list of detections + times
 - Vertex determined by picking position with tightest bounds on photon emission time
 - Directions come from ring shapes/vertex
 - Energy comes from opening angle; signal size
 - PID come from ring shape; more
 - 'Showering' particles produce fuzzy ring edges
 - 'Non-Showering' particles produce crisp ring edges

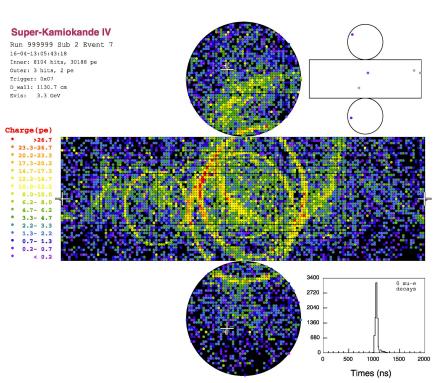
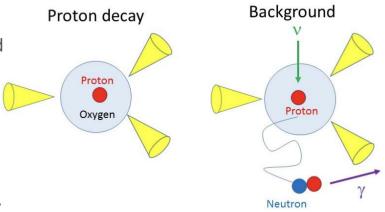



Figure pulled from Observation of Astrophysical Neutrinos

William Matava

Background Tagging @ Super-K

- Careful consideration of radiopurity/shielding already taken
 - There's no shielding/tagging neutrinos...
- $p \rightarrow e^+ \pi^0$ has characteristic 3-ring decay
 - Pion decays to 2 gammas
 - Most backgrounds can be automatically vetoed
- Main background is: $\nu_e \ p \rightarrow n \ e \ \gamma \ \gamma$
 - Neutron does not shower, so 3-rings...
 - Neutron can thermalize; be captured by H:
 - $p + n \to d + \gamma (2.2 \text{ MeV})$
 - 2.2 MeV is technically below threshold
 - Reconstructed w/ MC @ ~25% efficiency

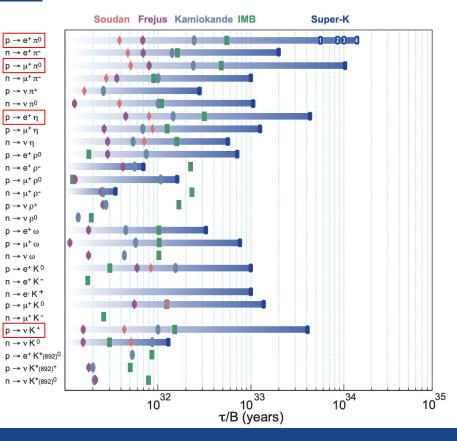
Figure pulled from 2306.02401

How do our Theories Hold up?

- Many theories have been ruled out experimentally
 - Others are currently being squeezed...

Model class	References	Lifetime [years]	Ruled out?
Minimal SU(5)	Georgi & Glashow [21]	$10^{30} - 10^{31}$	yes
Minimal SUSY SU(5)	Dimopoulos & Georgi [22]; Sakai & Yanagida [23]	$10^{28} - 10^{34}$	yes
SUGRA SU(5)	Nath, Chamseddine & Arnowitt [24]	$10^{32} - 10^{34}$	yes
SUSY (MSSM/ESSM) $SO(10)/G(224)$	Babu, Pati & Wilczek [25]	$2\cdot 10^{34}$	yes
SUSY (MSSM/ESSM, $d = 5$) SO(10)	Lucas & Raby [26]; Pati [27]	$10^{32} - 10^{35}$	partially
${ m SUSY}~{ m SO(10)} + { m U(1)_{fl}}$	Shafi & Tavartkiladze [28]	$10^{32} - 10^{35}$	partially
${ m SUSY}\;(d=5)\;{ m SU}(5)-{ m option}\;{ m I}$	Hebecker & March-Russell [29]	$10^{34} - 10^{35}$	partially
SUSY (MSSM, $d = 6$) SU(5) or SO(10)	Pati [27]	$\sim 10^{34.9\pm1}$	partially
Minimal non-SUSY $SU(5)$	Doršner & Fileviez-Pérez [30]	$10^{31} - 10^{38}$	partially
Minimal non-SUSY $SO(10)$		—	no
SUSY (CMSSM) flipped $SU(5)$	Ellis, Nanopoulos & Walker [31]	$10^{35} - 10^{36}$	no
GUT-like models from string theory	Klebanov & Witten [32]	$\sim 10^{36}$	no
Split SUSY $SU(5)$	Arkani-Hamed et al. [33]	$10^{35} - 10^{37}$	no
SUSY $(d = 5)$ SU (5) – option II	Alciati et al. [34]	$10^{36} - 10^{39}$	no

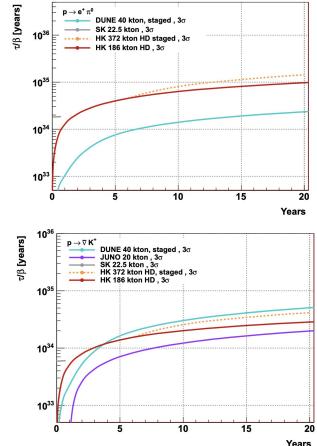
How do our Theories Hold up?


- Cherenkov-based impose strongest limits
 - Note four branches with highest limits:

$$p \rightarrow e^+ \pi^0$$

$$p \rightarrow \mu^+ \pi^0$$

$$p \rightarrow \nu K^+$$


$$p \rightarrow e^+ \eta$$

William Matava

Future Experiments

- Hyper-KamiokaNDE
 - ~ ~10 Super-KamiokaNDE's in mass!
 - Data taking in 2027
- Using DUNE far detector (LAr-TPCs)
 - K⁺ is too massive; above cherenkov threshold in water!
 - LAr-TPCs can image K⁺ directly, for better efficiency!
- EssnuB far detector
 - Long-baseline neutrino experiment
 - Data taking in ~2037 (?)
- JUNO detector
 - Water-based far detector for med. baseline v experiment
 - WBLS

Plots taken from <u>1805.04163</u>

Citations

- General Proton Decay
 - <u>https://arxiv.org/pdf/2306.02401.pdf</u>
- Frejus experiment
 - <u>https://ntrs.nasa.gov/api/citations/19850027771/downloads/19850027771.pdf</u>
- Soudan Experiment
 - <u>https://inspirehep.net/literature/277568</u>
- IMB Experiment
 - <u>https://www.sciencedirect.com/science/article/pii/016890029390998W</u>
- Super-Kamiokande Experiment
 - https://arxiv.org/abs/2010.16098