Results/Prospects from LZ By Taurean Zhang ### **Outline** - Overview of Dark Matter - WIMPS - How WIMPS are detected - How the LZ Detector works - Design/Specifications - Particle Collision Scenario - Results - Future Prospects ### **Overview of Dark Matter** - Proof for dark matter exists from mass reconstruction, CMB comparisons, etc. - Numerous models exist to describe this phenomenon - Accounts for around 85% of universe matter content ### **Dark Matter Interactions** - Can only interact with SM particles via gravity or other weak interactions - Must be nearly charge neutral as a result - Most can't be made of baryons - Density can't be very large (order of ~0.4 GeV/cm³) [Queiroz] - Must be moving non-relativistically (10⁻³ c) - No strong interactions with itself ### **WIMPS** - Weakly Interacting Massive Particles - Mass Range: GeV to TeV - Scattering Cross Section (low momentum transfer) [Queiroz]: $$\sigma_{ ext{SI}}^M = rac{4\mu_{\chi A}^2}{\pi} \left[\lambda_p^M N_p + \lambda_n^M N_n ight]^2 \,.$$ - Can annihilate into SM particles - One particle dark matter model ### **Direct Detection** - WIMPS detected via collisions with ordinary matter - Scintillation photons from recoiling track from target nucleus - Ionized electrons from track of recoiling nucleus - Heat ### **Scintillator** - Scintillator type of material that absorbs energy and emits photons - Liquid xenon used for a variety of reasons - Noble gas - No long lived radioactive isotopes (Xe124 and Xe136 have low decay rates) - Comparable nucleus mass to WIMP mass (120 GeV) - Two kinds of scintillation light - S1 when particle first comes into contact with xenon nuclei - S2 electrons produced from initial collision traveling through gas near top PMT array ### What is LZ? - Dual phase xenon detector - Built to detect WIMPS - Utilizes liquid xenon as scintillator - Records photons produced in scintillator as waveforms via PMT arrays ## LZ Detector Design # **Building LZ** ### **Particle Collision** - Particle coming in hits a xenon nucleus, producing photons (S1) and electrons - Electrons drift upwards due to external electric field, more photons produced above gas-liquid barrier near top PMT array - Light pulses recorded via PMTs, producing waveforms # Sample Waveform - Typical S1 signal will be smaller than S2 as the S2 signal is multiplied - Time delay between S1 and S2 gives a sense of the event's depth - S2 signal location gives x and y coordinates ### **First Results** #### First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment ``` J. Aalbers, ^{1,2} D.S. Akerib, ^{1,2} C.W. Akerlof, ³ A.K. Al Musalhi, ⁴ F. Alder, ⁵ A. Alqahtani, ⁶ S.K. Alsum, ⁷ C.S. Amarasinghe, ³ A. Ames, ^{1,2} T.J. Anderson, ^{1,2} N. Angelides, ^{5,8} H.M. Araújo, ⁸ J.E. Armstrong, ⁹ M. Arthurs, ³ S. Azadi, ¹⁰ A.J. Bailey, ⁸ A. Baker, ⁸ J. Balajthy, ¹¹ S. Balashov, ¹² J. Bang, ⁶ J.W. Bargemann, ¹⁰ M.J. Barry, ¹³ J. Barthel, ¹⁴ D. Bauer, ⁸ A. Baxter, ¹⁵ K. Beattie, ¹³ J. Belle, ¹⁶ P. Beltrame, ^{5,17} J. Bensinger, ¹⁸ T. Benson, ⁷ E.P. Bernard, ^{13,19} A. Bhatti, ⁹ A. Biekert, ^{13,19} T.P. Biesiadzinski, ^{1,2} H.J. Birch, ^{3,15} B. Birrittella, ⁷ G.M. Blockinger, ²⁰ K.E. Boast, ⁴ B. Boxer, ^{11,15} R. Bramante, ^{1,2} C.A.J. Brew, ¹² P. Brás, ²¹ J.H. Buckley, ²² ``` - First results published in 2023 - Nuclear-recoil calibration done via DD, AmLi, and YBe neutron sources - Electron-recoil calibration done via sources such as tritium (beta decay) ### **First Results** - Left: Overlay of calibration data (tritium in blue, DD in orange) - Right: Observed WIMP-search data (60 out of 1000 live planned days) ### **First Results** - Sensitivity lost for extremely large/small WIMP masses - WIMP mass tested from 9 GeV to 10 TeV - Most sensitive WIMP search to date - Still currently collecting more data ### **Prospects** - Planning to increase the exclusion space [Chou, Soares] - Extend space to around green region - Increase sensitivity to approach neutrino fog region - Unique detectors utilizing liquid helium can fill in new technology band #### **Sources** - Queiroz, F. S. (2017). WIMP Theory Review. arXiv [Hep-Ph]. Retrieved from http://arxiv.org/abs/1711.02463 - Aalbers, J., Akerib, D. S., Akerlof, C. W., Al Musalhi, A. K., Alder, F., Alqahtani, A., ... Zweig, E. A. (2023). First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment. *Physical Review Letters*, 131(4). doi:10.1103/physrevlett.131.041002 - Chou, A. S., Soares-Santos, M., Tait, T. M. P., Adhikari, R. X., Anchordoqui, L. A., Annis, J., ... Tanedo, P. (2022). Snowmass Cosmic Frontier Report. arXiv [Hep-Ex]. Retrieved from http://arxiv.org/abs/2211.09978