Search for new phenomena using jets

By Kirill Naumov

BSM: Why do we search?

- Many theories:
 - Supersymmetry, string theory,
 M-theory, extra dimensions
- Almost all have predictions of new, yet to be discovered particles
- So far nothing, but the search continues

Paper

Submitted to: PRD

CERN-EP-2017-042 28th March 2017

Search for new phenomena in dijet events using 37 fb⁻¹ of *pp* collision data collected at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

Why dijets?

- Primary source of new particles
- The dijet invariant mass distribution, m_{jj} , is well predicted by QCD.
- Easy to look for localized excesses near the mass of resonance.
- Moreover, QCD predicts jets at a small angle θ^* , while some BSM theories predict more isotropic signatures.

Event selection

- Anti- k_t algorithm with R = 0.4
- Jets with $p_t > 20 GeV$ are considered
- Rapidity difference $y^* = \frac{y_1 y_2}{2}$ was chosen to be $|y^*| < 1.2$
- To reduce the background from QCD processes, additional subset with $|y^{*}| < 0.6$ was analyzed
- Full efficiency for both y^* and \mathcal{P}_t requirements is reached for $m_{jj}>1.7TeV$ and $m_{jj}>1.1TeV$ respectively

Dijet mass distribution

Resonance Search

Prior analysis shown that

$$f(z) = p_1(1-z)^{p_2} z^{p_3} z^{p_4 \log(z)}$$

With $z = \frac{m_{jj}}{\sqrt{s}}$ and p_i 's describing the distribution at lower collision energies.

Angular Analysis

 $|y^*| < 1.7, |y_B| = \frac{y_1 + y_2}{2} < 1.1$

Quantum Black Holes: Overview

- One of the tools to study quantum gravity
- "Quantumness" of a black hole is directly related to the Planck's mass
- Planck's mass can be varied in the **ADD** model (large extra dimensions)

Quantum Black Holes: Predictions

Existence of higher dimensions

1

Fundamental scale of gravity ~ few TeV

1

QBH are produced by LCH and decay into particles thus producing peaks in m_{ij} distribution

Profit?

Quantum Black Holes: Benchmark

- **BlackMax** event generator
- Number of extra dimensions n = 6 and $M_D=M_{th}$
- Branching ratio to dijets $\geq 96\%$
- Acceptance $\sim 53\%$

Quantum Black Holes: Results

95% CL exclusion limits:

Observed: 8.9 TeV

- Expected: 8.9 TeV

Excited Quarks: Overview

- What if quarks are not as fundamental as we think?
- If so, we can "excite" them which would lead to radiation by the hypothetical constituents which is a great signature

Excited Quarks: Predictions

- Two main input parameters mass and coupling constant
- Previous searches excluded masses below 3.5 TeV assuming the coupling constant of the same order as for the ordinary quarks.

Excited Quarks: Benchmark

- Pythia 8.186
- Coupling constant for excited and regular quarks is the same
- No interference with the SM
- Only $q^* \rightarrow q + g$ is simulated, branching ratio 85%
- Acceptance for q^* of mass 4 TeV is 58%

Excited Quarks: Results

95% CL exclusion limits:

Observed: 6.0 TeV

- Expected: 5.8 TeV

Excited W^* : Overview

- Similar to excited quarks
- Although both W and Z boson theoretically can be excited, $\,W^*\,$ is lighter

Excited W^* : Predictions

- Main production mechanism is via $q\overline{q}$ resonance fusion
- Can distinguished from W' and Z' production due to different cross angular dependence of the cross-section:

$$\frac{\sigma(q\overline{q}\to Z^*/W^*\to f\overline{f})}{d\ cos\theta}\propto cos^2\theta \qquad \frac{\sigma(q\overline{q}\to Z'/W'\to f\overline{f})}{d\ cos\theta}\propto 1+cos^2\theta$$

Excited W*: Benchmark

- CalcHEP 3.6 + Pythia 8.210
- Mixing angle $\phi_X = 0$
- Unlike previous signals, peak for $y^* \approx 1$, so the region with $|y^*| < 1.2$ is chosen instead.
- Acceptance 33% for 2 TeV and 60% for highest masses.

Excited W^* : Results

95% CL exclusion limits:

- Observed: 3.4 TeV (3.77 TeV - 3.85 TeV)

- Expected: 3.6 TeV

W' and Z': Overview

- Arise from symmetry breaking of extended gauge theories
- Examples: W'
 - $SU(3) \times SU(2) \times SU(2) \times U(1)$ with $SU(2) \times SU(2)$ breaking into a diagonal subgroup $SU(2)_W$
 - 331 model: $SU(2)_W$ is embedded into a larger SU(3)
- Examples: Z'
 - E6 model, Pati-Salam model, Little Higgs models

W' and Z': Predictions

- Assuming low branching ratio to dark matter, the resonance width of Z' is dependent only on its coupling to quarks g_q
- Both Z' and W' are usually created from $q\overline{q}$ annihilation
- Only decays $W'/Z' \rightarrow tb$ considered

W' and Z': Benchmark

- W':
 - Pythia 8.205
 - Restricted only to $W' \rightarrow q\overline{q}$
 - Assumes axial-vector SM coupling
- Z':
 - MadGraph5_aMC@NLO v2.2.3 + Pythia 8.210
 - Assumes axial-vector coupling to SM quarks and Dirac fermion dark matter candidate
- No interference with the SM
- Coupling constant $g_q \leq 0.5$

W': Results

95% CL exclusion limits:

- Observed: 3.6 TeV

Expected: 3.7 TeV

Z': Results

Contact interaction: Predictions

- Mediating particles with masses that cannot be probed directly
- Might affect the dijet angular distributions
- Only $\eta_{LL}=\pm 1, \eta_{RR}=\eta_{RL}=0$ is considered

$$\begin{split} \mathcal{L}_{qq} &= \frac{2\pi}{\Lambda^2} [\; \eta_{\text{LL}}(\bar{q}_{\text{L}}\gamma^\mu q_{\text{L}})(\bar{q}_{\text{L}}\gamma_\mu q_{\text{L}}) \\ &+ \eta_{\text{RR}}(\bar{q}_{\text{R}}\gamma^\mu q_{\text{R}})(\bar{q}_{\text{R}}\gamma_\mu q_{\text{R}}) \\ &+ 2\eta_{\text{RL}}(\bar{q}_{\text{R}}\gamma^\mu q_{\text{R}})(\bar{q}_{\text{L}}\gamma_\mu q_{\text{L}})] \end{split}$$

Contact interaction: Results

Top: Constructive interference

- Observed: 21.8 TeV
- Expected: 28.3 TeV

Bottom: Destructive interference

- Observed: 13.1 TeV (17.4 TeV -29.5 TeV)
- Expected: 15.0 TeV

Generic Gaussian Signals

Conclusion

The dijet invariant mass distribution exhibited no significant deviations from the SM predictions. The dijet angular distribution also agreed to a MC simulation of the SM. New limits were set on the QBHs, excited quarks, excited W bosons, W' and Z', contact interaction, and generic Gaussian signals.

However, the usage of jets provides a great window of opportunity to test BSM theories.

References

- 1. The ATLAS Collaboration "Search for new phenomena in dijet events using 37 fb-1 of pp collision data collected at $\sqrt{s} = 13$ TeV with the ATLAS detector"
- 2. <u>Dimopoulos, S.; Landsberg, G. L. (2001). "Black Holes at the Large Hadron Collider"</u>
- 3. <u>M. V. Chizhov, "A Reference Model for Anomalously Interacting Bosons"</u>
- 4. P. Langacker, R. W. Robinett and J. L. Rosner "New heavy gauge bosons in pp and pp collisions"