# **Jet Tagger Calibration**

Liam Foster

#### Overview

#### We will go over:

- 1. A brief reminder about flavor tagging
- 2. What calibration means
- 3. What we need to understand to do calibration
- 4. How we actually do calibration
- 5. How calibration methods lead to process dependance

#### Flavor Tagging Overview

- Discriminating jets based on initial parton is necessary for many analyses
- Flavor taggers give jets light (I), charm (c), bottom (b) scores
- Modern flavor taggers use ML models trained on MC
- MC mismodelling can carry over into tagger training
- Charlie gave a great overview a couple weeks ago



$$D_b = \log \left[ \frac{p_b}{f_c \cdot p_c + (1 - f_c) \cdot p_u} \right]$$

#### How Tagging Calibration fits into General Analysis Workflow



 Basic goal of tagger calibration is to understand how MC mismodelling affects tagging and determine uncertainties

#### Why is Calibration Necessary?

- Analyses need to understand tagger efficiency to correctly extract numbers of events
- Tagger efficiency may vary when applied to MC or data
- Tagger efficiency may be process dependant
- Some jet parameters are known to be generally modeled poorly



#### How do we Calibrate?

- Need to determine efficiencies
- MC efficiency is easy, data efficiency is harder
- Extract SFs from 'well known' sample dominated by f-jets

$$SF^f = \frac{\varepsilon_{\text{data}}^f(p_T, ...)}{\varepsilon_{\text{MC}}^f(p_T, ...)}$$

f = flavor, process

#### Example: b-tagger Calibration Overview

- Need to understand efficiencies of I, c, b-tagging on data
- Need samples enriched in jet flavor of interest with well known composition
- Samples need to be determined without use of tagger
- Separate MC-MC comparisons can be used to try to remove process dependance
- Will go through a handful of different SF analyses
- Potential drawback of this presentation strategy is I am not knowledgeable enough on this topic to judge the quality of these analyses...

## Example: b-tagger l-mistag efficiency

- Use Z+jets
- b-taggers are too good at I-rejection, too few I-jets left after use of b-tagger
- Use 'flipped' b-tagger to suppress b,c-tag efficiency without changing l-tag efficiency







### Example: b-tagger l-mistag efficiency

- Perform fit in tagger discriminant, and SV mass
- **Extract SFs**
- A bit confusing to me to use MC to characterize MC mismodelling







Jet p\_ [GeV]

250

250 Jet p\_ [GeV]

### Example: b-tagger c-mistag efficiency

- Historically has mainly used single lepton ttbar, but W+c has also been used
- Use log likelihood fit to reconstruct ttbar and tag jets as originating from t or W
- Applies b-tagging to t-jets
- W branching ratio is well known, so W jet sample composition should be too



#### Example: b-tagger c-mistag efficiency

- $\chi^2$  fit done in bins of W-jet p<sub>T</sub> and tagging interval
- SFs are left as a free parameter and extracted from the fit



## Example: b-tagger b-tag efficiency

- Use ttbar eµ dilepton dijet channel, with lepton  $p_{\tau} \ge 50$  GeV to reduce  $\tau$  background
- Jets and leptons are paired into t candidates by minimizing m<sup>2</sup><sub>j1+l1</sub>+m<sup>2</sup><sub>j2+l2</sub> to reward reconstructing objects of similar mass
- Main remaining background is ttbar ISR (FSR), and denoted as bl (lb)
- Kinematics allows events to be split into bb, bl, lb, ll enriched regions based on m<sub>i1,l</sub>,m<sub>i2,l</sub>



## Example: b-tagger b-tag efficiency

- SR classified via ABCD method for each bin of leading, subleading jet p<sub>T</sub>
- Log likelihood fit is performed, with probability of b-tag as a nuisance parameter
- SFs are extracted as a function of jet p<sub>T</sub>







#### Process Dependance

- The methods described for determining SFs are naturally optimized for the samples they use
- MC to MC SFs can be determined, but checking against data is superior



#### Summary

#### We've gone over

- 1. What SFs are
- 2. Why SFs are important
- 3. How SFs are generally determined
- 4. How SFs tend to be process dependant

### A much better talk by Valerio Dao







# Thanks! Questions?