
Low Mass DM in Liquid Noble Detectors

Roger K. Romani

290E

December 3, 2019

Liquid Noble DM Detectors

Why Liquid Nobles?

Lots of success in the "Heavy" WIMP space

- Scalibility
 - Want a bigger detector? Buy a bigger bucket
 - The bigger the better
- Proven technology
 - "Just" PMTs + electric field
- Multiple observation channels
 - NR/ER discrimination

Why (Not) Liquid Nobles?

Conventional wisdom: Liquid Nobles good at heavy masses, cryogenic calorimeters good at low masses

- Inherent threshold limitations
 - Current Xenon TPCs can't really reduce thresholds by x10 operating in the same way
 - ▶ 10-20 photons per KeV \rightarrow 50-100 eV per photon in Xe, Ar not better
 - Already single charge sensitive
- Xe, and Ar heavy nuclei
 - Less momentum transfer from "light" DM

Why Liquid Nobles? (for real this time)

New strategy:

- Retain most or all of benefits from traditional liquid noble TPCs
 - ► Scalibility, low backgrounds, proven design, etc.
- Lighter targets
 - \blacktriangleright He, e^- , etc.
- Lower thresholds
 - Higher yield targets
 - New ideas

Idea 1: LZ (or XENONnT ...) with He

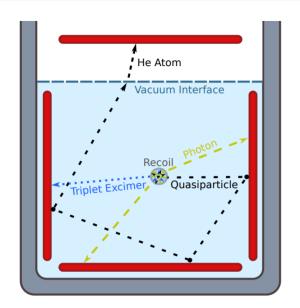
Benefits:

- ► Huge mass!
- Light target, more efficient energy transfer!
- ▶ We know how to do this, just take out Xe and add He

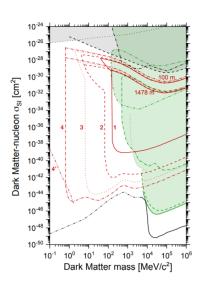
- ► Higher ionization energy, less yield, harder to ionize atoms
- Leaving a lot of energy on the table, most energy goes into undetected heat/quasiparticles

Idea 1.1: LZ with He, looking at heat

Idea:


▶ Pick up heat signal, in addition to light signal

Benefits:


- Essentially limitless* energy threshold
 - With an arbitrarily sensitive calorimeter, you can see signals as low as 1 meV
 - Can also ionize quantum evaporated He atoms

- Need to do at mK temperatures if you want low thresholds
 - Superfluid creep...
- Calorimetry arrays are harder than PMTs
- Overall, lots of technical challenges

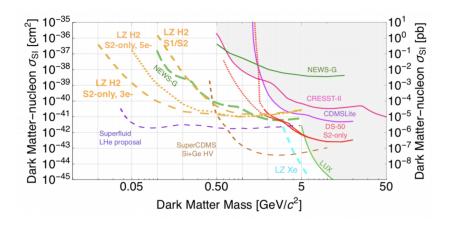
Ideal 1.1: HeRALD

Ideal 1.1: HeRALD

Idea 1.2: LZ with just a little bit of He

Idea:

- Mix a little (about 0.1 percent) of He into the Xe of an LZ-like IXe TPC
 - Also works with Ne, H


Benefits:

- ► Really, really easy*, just mix He into existing experiment
 - OK, would need different getters, questions about PMT performance, but there's no reason it couldn't be an LZ upgrade
- Low mass He nuclei good for recoils, proven Xe performance

- Lose some mass compared to pure He concept
 - Not a big deal, you don't need a lot of mass to do good low mass work
- ▶ Still limited in inherent threshold by Light + Charge yields
- Uncertainty about how recoil will behave compared to Xe NR/ER

Idea 1.2: LZ with just a little bit of He

From "HydroX" talk, Alissa Monte, Aug 1 2019

Idea 2: LZ

Idea:

- ► Electrons are really light, certainly could interact with DM
- LZ is already really good at looking for electron events
 - ► So called "S2 only" searches

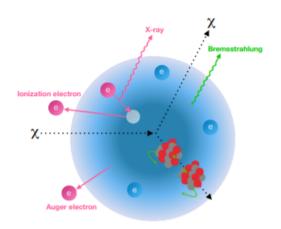
Benefits:

- There's really no experiment to build, it's just a different analysis
- LZ has a lot of electrons, and is already single electron sensitive

- ► LZ is already single electron sensitive
 - No opportunity for improvement...

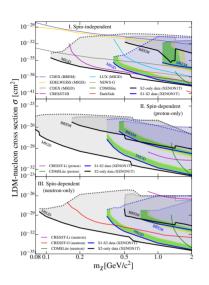
Idea 2.1: Migdal Effect

Idea:


- Electrons are really light, certainly could interact with DM
- LZ is already really good at looking for electron events

Benefits:

- ► There's really no experiment to build, it's just a different analysis
- LZ has a lot of electrons, and is already single electron sensitive


- LZ is already single electron sensitive
 - No opportunity for improvement...

Idea 2.1: Migdal Effect

XENON1T paper: arXiv 1907.12771

Idea 2.1: Migdal Effect

XENON1T paper: arXiv 1907.12771

Summary

Two main ideas:

- ► Look at NRs off of lighter liquid nobles
- Look at electron events in existing Xe TPCs

Old paradigm:

► Liquid noble TPCs great for high mass WIMPs, solid state detectors great for low mass WIMPs

New landscape:

Liquid nobles great for high mass WIMPs, lots of promise, new ideas for low mass WIMPs