Semiconductor Targets for Direct Detection Experiments

Summer Zuber December 4, 2019 Physics 290e

Searching for Light Dark Matter

- New paradigm: Search everywhere, not just for WIMPS!
- Plenty of sub-GeV DM Models to Probe: MeV dark matter, WIMPless miracle DM, bosonic super-WIMP, GeV hidden sector dark matter, asymmetric DM, freeze-in DM, Strongly Interacting Massive Particles....
 - Light Dark Matter (LDM) ~ keV to GeV mass range
- A time for new ideas, experiments, detection technologies!

Nuclear Recoils (Traditional)

CDMS, CRESST, DAMA/LIBRA, DAMIC, LUX, SABRE....

Elastic Nuclear Recoil Energy Transferred:

$$\Delta E \le \frac{\Delta P^2}{2M_N} \longrightarrow \Delta E \le \frac{2m_{DM}^2 v_{DM}^2}{M_N}$$

100 MeV DM - He Nucleus scattering \rightarrow ~ 1 eV detectable energy (below current detector thresholds)

Total energy is much larger → Elastic nuclear scattering inefficient for LDM

$$E_{tot} = \frac{1}{2}m_{DM}v^2 \simeq 50eV \times \frac{m_{DM}}{100MeV}$$

- Superconductors
 Dirac materials

 order meV gaps
- Multi-excitation production in superfluid helium
- Single phonon and magnon excitations in crystals
- Electron transitions in atoms and semiconductors

Target Comparison Study of 24 Crystal Materials (arXiv:1910.10716)

- What types of excitations can be used as efficient detection paths?
- What materials have the strongest response to DM scattering?

Three Main Detection Channels

- Nuclear Recoils
 - Best for > 100 MeV mass DM
- Electron Transitions across band gaps in crystals
 - Best for < ~ 100 MeV down to ~ 100 keV
 - Single phonon excitations in crystals
 - Reaches lower masses ~ keV mass DM

Small Band Gap → Low Mass Reach

- Low bandgaps of order 1 eV → Low threshold for ionization/excitation to conduction band
 - Silicon 1.1 eV
 - Germanium 0.67 eV
 - Diamond 5.47 eV
 - Gallium Arsenide 1.42 eV
 - Indium Antimonide 0.17 eV (0.24 eV at "low temperature")
- Lowest DM masses possible set by

$$m_{\chi}v_{max}^2/2 > E_g \longrightarrow m_{\chi} \sim 0.3 MeV \frac{E_g}{eV}$$

→ Lightest DM mass sensitivity possible for Germanium ~ 200 keV

Aside: Direct versus Indirect Gap Semiconductors

- Direct gap: Electron transition from valence band to conduction band changed potential energy
- Indirect gap: Electron transition from valence band to conduction band changes potential energy and momentum
- E_g should be replaced with the minimum kinematically allowed energy difference
- Germanium (indirect gap) actually has worse reach than Silicon

Theoretical Framework

- Calculate scattering rates (complicated)
 - Electrons moving fast
 - Have Indefinite momentum
 - Complicated Energy Level Structure

$$R = \frac{1}{\rho_T} \frac{\rho_{\chi}}{m_{\chi}} \int dv^3 f_{\chi}(v) \Gamma(v) \qquad \Gamma(v) = \frac{\pi \bar{\sigma}}{\mu^2} \int \frac{d^3 q}{(2\pi)^3} \mathcal{F}_{med}^2(q) S(q, \omega_q)$$
$$S(q, \omega_q) = \frac{1}{V} \sum_f |\langle f | \mathcal{F}_T(q) | i \rangle|^2 2\pi \delta(E_f - E_i - \omega)$$

Evaluate S for each detection channel

- Electron Transitions:
 - Found by calculating a whole bunch of Bloch wavefunctions using density functional theory
 - Generally not isotropic in q

- Simplest crystal targets (Si, Ge) quite isotropic
 - Rate independent of incoming DM velocity
- As the target rotates with Earth, the DM wind incoming velocity comes from different directions
 - Daily modulation of the rate
 - Distinct modulation from backgrounds!
- Example: Boron Nitride has layered crystal structure → highly anisotropic
 - 10-40% rate modulation
 - Greater modulation for smaller energy depositions, greater anisotropies near the band gap

arxiv:1910.08092

Best Materials for Electron Signal Path

They highlight SiO₂ and InSb as particularly sensitive to this benchmark model

DM scattering mediated by a kinetically mixed light dark photon

Dashed: Single phonon excitations

Solid: Electron transitions

) 1			
	Light dark	s photon mediator (Sec. III, Fig. 1)	
Detection channel	Quantity to maximize to reach		Best materials
	lower m_{χ}	lower $\overline{\sigma}_e$	Dest materials
(Optical) phonons	ω_O^{-1} (Eq. (24))	quality factor Q defined in Eq. (27)	SiO ₂ , Al ₂ O ₃ , CaWO ₄
Electron transitions	E_g^{-1} (Eq. (28))	depends on details of electron wavefunctions	InSb, Si
Nuclear recoils	$(A\omega_{\min})^{-1}$ (Eq. (29))	$(Z/A)^2 \omega_{\min}^{-1}$ (Eq. (31))	diamond, LiF
	Hadrophilic	scalar mediator (Sec. IV, Figs. 2, 3)	
Detection channel	Quantity to maximize to reach		Best materials
	lower m_{χ}	lower $\overline{\sigma}_n$	Dest materials
(Acoustic) phonons	$c_s/\omega_{\mathrm{min}}$ (Eq. (36))	Light mediator: ω_{\min}^{-1} (Eq. (35))	diamond, Al ₂ O ₃
		Heavy mediator: c_s^{-1} or $\omega_{\rm ph}^{-1}$ or $A\omega_{\rm ph}$	all complementary
		depending on m_{χ} (Eqs. (37), (38), (39))	
Nuclear recoils	$(A\omega_{\min})^{-1}$ (Eq. (29))	Light mediator: ω_{\min}^{-1} (Eq. (40))	diamond, LiF
		Heavy mediator: A (Eq. (43))	CsI, Pb compounds

Table II. Summary of our results. The material properties relevant for the optimization of target are: atomic mass number A, proton number Z, electronic band gap E_g , speed of sound c_s , optical phonon energy ω_O , average phonon energy $\omega_{\rm ph}$, as well as Born effective charges and the high-frequency dielectric constant that enter the quality factor Q. Achieving lower detector energy thresholds $\omega_{\rm min}$ is also crucial in several cases.

Single Electron Hole Pair Detection

In order to achieve these low-mass thresholds, need to detect single electron-hole pairs

ZEPLIN-II and XENON10: Amplification by drifting electrons through gas-phase xenon producing scintillation light

Semiconductor Targets: Amplification by drifting electrons across crystal producing phonons **OR** really accurate charge measurement

All Experiments: Apply an electric field across detector to drift electrons to readout

SuperCDMS HVeV Detector: Luke-Neganov Gain

- 0.93 gram Silicon target
- Luke-Neganov Gain:
 - total phonon energy: $E_{total} = E_{recoil} + N_{eh}e\Delta V$
- Instrumented with phonon sensors and electrodes
- Phonon sensors have thermal noise → Operated at ~4omK temperatures

SuperCDMS HVeV Detector: Energy Spectrum and Charge Leakage

Simple background model of bulk and surface charge leakage with impact ionization fits data below 2eh pairs

But the amount of 2eh pairs is non-Poissonian

- Impact ionization?
- Transport Physics?
- Scintillation of surrounding materials?

Charge leakage mostly near outer radius

DAMIC/SENSEI

 Typical CCD sensors use photoelectric effect to absorb incident photons in a Si substrate and generate eh pairs

• Uses Skipper CCDs to detect nuclear + electron recoils in

Silicon

- Operated at 140 K
- 675 um thick
- 70V applied

DAMIC/SENSEI: Electronic Recoils in CCDs

- Low-frequency readout noise has been a fundamental limit on single-electron counting
- → "Skipper" CCD Readout Technology

– N-samples:

 $\sigma o rac{\sigma}{\sqrt{N}}$

- Constraints on hidden-photon DM with masses 1.2-30eV
- Constraints on DM masses of ~500 keV - 4 MeV

Papers

```
arxiv:1910.10716 (Target Comparison)
arxiv:1911.11905 (SuperCDMS axion+dark photon search)
arXiv:1804.10697 (SuperCDMS Electron scattering and dark photon absorption CDMS HVeV)
arXiv:1203.2531 (Semiconductors Proposed)
arxiv:1108.5383 (Semiconductors Proposed)
arxiv:1509.01598 (Numerical Calculation of Scattering Rates – Expands on arXiv:1108.5383)
arxiv:1910.08092 (Theoretical Framework for Direct Detection Rates)
arxiv:1607.01009 (Scintillating Targets)
```


Other Experiments

DarkSide-50: DM Electron Scattering in Liquid Argon target.

Readout: 38 3 inch PMTs.

Dedicated LDM searches in other dual-phase noble liquid experiments such as XENON100 and LUX

XENON10

Kinematic Regimes

arxiv.org:1910.08092 Fig 1

FIG. 1. Illustration of kinematic regimes probed via the three detection channels considered in this paper. For an incoming DM particle with velocity $v=10^{-3}$, the momentum transfer q and energy deposition ω are bounded by $\omega \leq qv - q^2/2m_\chi$, shown by the shaded regions for three DM masses. Nuclear recoils require $\omega = q^2/2m_N$ for a given type of nucleus, shown by the solid lines for helium and several elements in existing or proposed crystal targets. Standard calculations assuming scattering off individual nuclei break down below a few meV (a few hundred meV) for superfluid He (crystal targets), where we truncate the lines. Electron transitions can be triggered for ω above the band gap, which is $\mathcal{O}(eV)$ for typical semiconductors, as shown by the dashed line. The end point at $q \sim 10 \text{ keV}$ corresponds to a few times αm_e , above which valence electron wavefunctions are suppressed, and only (semi-)core electrons can contribute (which requires ω to be much higher than the band gap). Single phonon excitations are relevant for $\omega \lesssim \mathcal{O}(100 \,\mathrm{meV})$ in typical crystals, as shown by the dotted line. The momentum transfer can be up to $q \sim \sqrt{m_N \omega_{\rm ph}} \sim \mathcal{O}(100\,{\rm keV})$ with $\omega_{\rm ph}$ the phonon energies, above which the rate is suppressed by the Debye-Waller factor. We see that a GeV-mass DM can be probed by all three channels; a 10 MeV DM is out of reach in conventional nuclear recoil searches, but can be searched for via electron transitions in semiconductors and single phonon excitations in crystals; a sub-MeV DM cannot even trigger electron transitions in eV-gap materials, but can still be detected via single phonon excitations.

SuperCDMS Axion and Dark Photon Search

- Electron recoils in germanium "dark absorption"
 Used CDMSlite data for lower masses and iZIP dater for higher masses
- Constraints on axioelectric coupling of axion-like particles and the kinetic mixing parameter of dark photons
- Signal: peak in the recoil spectrum at the rest mass of the particle
- Did not model or subtract the background → only set upper limits on dark absorption rates
- Covers the mass range 40 eV 500 keV

- Low-energy electron recoils from small-angle Compton scattering of external gamma rays
- Fast neutrons
- High Voltage: charge leakage

Proposal to use GaAs and a scintillation signal

No electric field required to detect the photons → no charge leakage

